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Abstract. We prove existence and stability results for a two-parameter
family of solitary-wave solutions to a system in which an equation of non-
linear Schrödinger type is coupled to an equation of Korteweg-de Vries
type. Such systems model interactions between short and long dispersive
waves. The results extend earlier results of Angulo, Albert and Angulo,
and Chen. Our proof involves the characterization of solitary-wave so-
lutions as minimizers of an energy functional subject to two constraints.
To establish the precompactness of minimizing sequences via concen-
trated compactness, we establish the sub-additivity of the problem with
respect to both constraint variables jointly.

1. Introduction

Both the nonlinear Schrödinger equation

(1.1) iut + uxx + |u|qu = 0

for a complex-valued function u of x ∈ R and time t, and the generalized
Korteweg-de Vries equation

(1.2) vt + vxxx + vpvx = 0,

for a real-valued function v of x and t, are universal models for nonlinear
waves in dispersive media. Equation (1.2) arises generically as a model for
waves whose motion, to first order, is governed by the linear wave equa-
tion vt + vx = 0, but which on account of their long wavelength and small
but finite amplitude are influenced by weak nonlinear and dispersive effects.
Equation (1.2), on the other hand, describes the amplitude and phase mod-
ulations of long-wavelength, small-amplitude perturbations of a monochro-
matic short wave in a dispersive medium. Discussions of the canonical nature
of these equations may be found, for example, in chapters 13 and 17 of [23],
chapter 2 of [20], or chapter 10 of [19].
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In this paper we will consider a system describing the interaction of a
nonlinear Schrödinger-type wave with a Korteweg-de Vries type wave:

(1.3)
iut + uxx + τ1|u|qu = −αuv

vt + vxxx + τ2v
pvx = −α

2
(|u|2)x,

where τ1, τ2, and α are real constants. The form of the coupling terms in
system (1.3) is also universal: the system arises as a model for interactions
between long waves and long-wavelength envelopes of short waves in a vari-
ety of physical settings. For example, it appears in [14] and [15] as a model
for the interaction between long gravity waves and capillary waves on the
surface of shallow water. A system of similar form, but with the term vxxx
in the second equation replaced by −vxxx, appears in [4] (see also [21]) as
a model for the interaction of Langmuir waves and ion-acoustic waves in a
plasma. The status of (1.3) as a generic model may be related to the fact
that it has a Hamiltonian structure in which the Hamiltonian (the func-
tional E(u, v) defined below) has the coupling term αv|u|2. If one requires
the coupling term to be a power series in |u|2 and v, this is the simplest
possible coupling one could expect.

We consider here the initial-value problem for (1.3) on the line, for (u, v)
in the space Y = H1

C(R) × H1(R). (Here H1(R) and H1
C(R) are L2-based

Sobolev spaces of real- and complex-valued functions on the line, respec-
tively. For more details on our notation, see below.) In the case when p = 1
and q = 2, for arbitrary values of τ1, τ2, and α, this problem has been shown
to be well-posed locally in time by Bekiranov et al. in [5], and global well-
posedness was proved by Corcho and Linares [9]. Dias, Figueira and Oliveira
[12] extended the global well-posedness result to the case when p = 1 and
1 < q < 4, and their proof will work for q = 1 as well1. These results depend
on the fact that the following functionals are conserved under the flow of
(1.3):

(1.4) E(u, v) =

∫ ∞

−∞

(
|ux|2 + v2x − β1|u|q+2 − β2v

p+2 − α|u|2v
)
dx,

where β1 = 2τ1/(q + 2) and β2 = 2τ2/((p+ 1)(p+ 2)),

(1.5) G(u, v) =

∫ ∞

−∞
v2 dx+ Im

∫ ∞

−∞
uux dx,

where ux is the complex conjugate of ux and Im(z) denotes the imaginary
part of z, and

(1.6) H(u) =

∫ ∞

−∞
|u|2 dx.

In other words, if (u, v) is a solution of (1.3) in Y , then E(u, v), G(u, v),
and H(u) are independent of time.

1João Paulo Dias, personal communication.
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The methods used in this paper require the assumption that τ1, τ2 and
α are positive, or at least non-negative. Also, in order for the term vp in
(1.3) or (1.4) to be defined when v < 0, we will assume in what follows
that p is a positive rational number with odd denominator. Much of what
is proved below should be readily extendable to versions of (1.3) with other
nonlinearities, such as when vpvx is replaced in (1.3) by (|v|p)x, in which
case the analogue of Theorem 1.1 will hold for all real values of p such that
1 ≤ p < 4.

The purpose of this paper is to prove existence and stability results for
(coupled) solitary traveling-wave solutions of (1.3). Such a solution is of the
form

(1.7) (u(x, t), v(x, t)) =
(
eiωteic(x−ct)/2ϕ(x− ct), ψ(x− ct)

)
,

where c > 0, ω ∈ R, and ϕ : R → C and ψ : R → R are functions that vanish
at infinity, in the sense that ϕ ∈ H1

C and ψ ∈ H1. Inserting the ansatz (1.7)
into (1.3), we see that (u, v) is a solution of (1.3) if and only if ϕ and ψ
satisfy the system of ordinary differential equations

(1.8)
−ϕ′′ + σϕ = τ1|ϕ|qϕ+ αϕψ

−ψ′′ + cψ =
τ2

p+ 1
ψp+1 +

α

2
|ϕ|2,

where σ = ω − c2/4, and primes denote derivatives of a function of a single
variable.

One question we address below is whether nontrivial solutions of (1.8)
exist. Our existence result is obtained by studying the variational problem of
finding, for given positive values of s and t, minimizers of E(u, v) subject to
the constraints that

∫∞
−∞ |u|2 dx = s and

∫∞
−∞ v2 dx = t. The connection to

solitary waves is due to the fact that equations (1.8) are the Euler-Lagrange
equations for this variational problem, with σ and c playing the role of
Lagrange multipliers. In Section 2, we use the method of concentration
compactness to prove the relative compactness of minimizing sequences for
the variational problem, and hence the existence of minimizers. This requires
proving the strict subadditivity (see Lemma 2.12 below) of the function
I(s, t) defined for s > 0 and t > 0 by
(1.9)

I(s, t) = inf

{
E(f, g) : (f, g) ∈ Y,

∫ ∞

−∞
|f |2 dx = s, and

∫ ∞

−∞
g2 dx = t

}
.

For equations (1.1) or (1.2), the variational problems which character-
ize solitary waves depend on a single constraint parameter, and proofs of
strict subadditivity are accomplished by simple arguments, dating back to
Lions’ original paper [17], which take advantage of homogeneities present in
the equation. To prove strict subadditivity for the two-parameter problem
defined in (1.9), however, seems to be more difficult. In [2], which treats
the case where p = 1 and τ1 = 0, it was noted that strict subadditivity, as
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defined below in Lemma 2.12, holds for α = 1/6 (corresponding to setting
the parameter q in [2] equal to 2), and it was shown that strict subadditivity
continues to hold for α in some neighborhood of 1/6. Here we are able to
extend this result to all positive values of α, all non-negative values of τ1,
all positive valued of τ2, all p ∈ [1, 4), and all q ∈ [1, 4). To do so, we rely on
an argument due to Byeon [6] and Garrisi [11], which exploits the fact that
the H1 norms of certain functions are strictly decreased when the mass of
the function is rearranged by symmetrization.

Before stating our existence result, let us define a minimizing sequence
for I(s, t) to be a sequence (fn, gn) in Y such that

lim
n→∞

∫ ∞

−∞
|fn|2 = s, lim

n→∞

∫ ∞

−∞
g2n = t, and lim

n→∞
E(fn, gn) = I(s, t).

Our existence result is the following.

Theorem 1.1. Suppose α > 0, τ1 ≥ 0, τ2 > 0, 1 ≤ q < 4, and 1 ≤ p < 4,
where p is a rational number with odd denominator. For s > 0 and t > 0,
define
(1.10)

Ss,t =
{
(ϕ, ψ) ∈ Y : E(ϕ, ψ) = I(s, t),

∫ ∞

−∞
|ϕ|2 dx = s, and

∫ ∞

−∞
ψ2 dx = t

}
.

Then the following statements are true for all s > 0 and t > 0.
(i) The infimum I(s, t) defined in (1.9) is finite.
(ii) Every minimizing sequence {(fn, gn)} for I(s, t) is relatively compact

in Y up to translations. That is, there exists a subsequence {(fnk
, gnk

)} and
a sequence of real numbers {yk} such that {(fnk

(·+yk), gnk
(·+yk)} converges

strongly in Y to some (ϕ, ψ) in Ss,t. In particular, the set Ss,t is non-empty.
(iii) Each function (ϕ, ψ) ∈ Ss,t is a solution of (1.8) for some σ and c,

and therefore when substituted into (1.7) yields a solitary-wave solution of
(1.3).

(iv) For every (ϕ, ψ) in Ss,t, we have that ψ(x) > 0 for all x ∈ R, and
there exist a number θ ∈ R and a function ϕ̃ such that ϕ̃(x) > 0 for all x ∈ R,
and ϕ(x) = eiθϕ̃(x). Also, the functions ψ and ϕ are infinitely differentiable
on R.

Notice that it is obvious from the definition of the sets Ss,t that they
form a true two-parameter family, in that Ss1,t1 and Ss2,t2 are disjoint if
(s1, t1) ̸= (s2, t2). Previously, Dias et al. [12] had proved that for p ∈
{1, 2, 3} (with α > 3 if p = 1), (1.3) has an infinite family of positive bound
states which decay exponentially at infinity. Compared to the result of [12],
ours has the advantages that we do not require α > 3 when p = 1, and
also that we obtain a true two-parameter family of solitary waves. In [12],
nonempty sets Tδ,µ of solitary waves are obtained by minimizing E subject
to
∫
|u|2 + δv2 = µ, but it is not clear whether Tδ1,µ1 is necessarily disjoint

from Tδ2,µ2 if (δ1, µ1) ̸= (δ2, µ2).
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A separate question is that of stability of the solutions of (1.8) as solutions
of the initial-value problem for (1.3). For s > 0 and t ∈ R, define

(1.11) W (s, t) = inf{E(h, g) : (h, g) ∈ Y, H(h) = s and G(h, g) = t}.

The variational problem associated to W (s, t) is suitable for studying sta-
bility because not only the functional E being minimized, but also the con-
straint functionals G and H are conserved for (1.3). If minimizers (Φ, ψ) for
W (s, t) exist, they satisfy the Euler-Lagrange equations

(1.12)

−Φ′′ + ωΦ+ ciΦ′ = τ1|Φ|qΦ+ αΦψ

−ψ′′ + cψ =
τ2ψ

p+1

p+ 1
+
α

2
|Φ|2

where the real numbers c and ω are the Lagrange multipliers. These equa-
tions are satisfied by Φ and ψ if and only if the functions u and v defined
by

(1.13) (u(x, t), v(x, t)) =
(
eiωtΦ(x− ct), ψ(x− ct)

)
are solutions of the NLS-KdV system (1.3). That is, solutions (Φ, ψ) of
the variational problem for W (s, t) are solitary-wave profiles, and (1.7) is

recovered from (1.13) by setting Φ(x) = eicx/2ϕ(x).
We have the following stability result.

Theorem 1.2. Suppose α > 0, τ1 ≥ 0, τ2 > 0, 1 ≤ q < 4, and p = 1. For
s > 0 and t ∈ R, define
(1.14)

Fs,t = {(Φ, ψ) ∈ Y : E(Φ, ψ) =W (s, t),H(Φ) = s, and G(Φ, ψ) = t} .

Then the following statements are true for all s > 0 and t ∈ R.
(i) The infimum W (s, t) defined in (1.11) is finite.
(ii) Every minimizing sequence {(hn, gn)} forW (s, t) is relatively compact

in Y up to translations. That is, if

lim
n→∞

H(hn) = s, lim
n→∞

G(hn, gn) = t, and lim
n→∞

E(hn, gn) =W (s, t),

then there is a subsequence {(hnk
, gnk

)} and a sequence of real numbers
{yk} such that {hnk

(· + yk), gnk
(· + yk)} converges strongly in Y to some

(Φ, ψ) ∈ Fs,t. In particular, the set Fs,t is non-empty.
(iii) Each (Φ, ψ) ∈ Fs,t is a solution of (1.12) for some ω and c, and there-

fore when substituted into (1.13) yields a solitary-wave solution of (1.3).
(iv) For every (Φ, ψ) ∈ Fs,t, let a = ∥ψ∥2 and b = (t − a)/s. Then there

exist θ ∈ R and a real-valued function ϕ̃ such that (ϕ̃, ψ) ∈ Ss,a and

(1.15) Φ(x) = ei(−bx+θ)ϕ̃(x)

on R. Further, if τ1 = 0, then a > 0, ψ(x) > 0 for all x ∈ R, and we can

take ϕ̃ to be everywhere positive on R.
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(v) The set Fs,t is a stable set of initial data for (1.3), in the following
sense: for every ϵ > 0, there exists δ > 0 such that if (h0, g0) ∈ Y ,

inf
(Φ,ψ)∈Fs,t

∥(h0, g0)− (Φ, ψ)∥Y < δ,

and (u(x, t), v(x, t)) is the solution of (1.3) with

(u(x, 0), v(x, 0)) = (h0(x), g0(x)),

then for all t ≥ 0,

inf
(Φ,ψ)∈Fs,t

∥(u(·, t), v(·, t))− (Φ, ψ)∥Y < ϵ.

Furthermore, the sets Fs,t form a true two-parameter family, in that Fs1,t1
and Fs2,t2 are disjoint if (s1, t1) ̸= (s2, t2).

We remark that, if it is assumed that that (1.3) is globally well-posed in
Y when 1 ≤ p < 4/3 (where p is rational with odd denominator), then the
above stability result extends to these values of p as well, with the same
proof.

From the definition of the variational problem for W (s, t) it is clear that
the sets Fs,t are invariant under the transformation

(Φ(x), ψ(x)) 7→ (eiθΦ(x− ξ), ψ(x− ξ)),

for every pair of real numbers θ and ξ, and so are at least two-dimensional
in size. On the other hand, for a given solitary-wave profile (g, h) in Fs,t,
the orbit O = {(u(x, t), v(x, t)) : t ∈ R} of the corresponding solitary wave
is seen from (1.13) to be given by

O =
{
(eictΦ(x− ct), ψ(x− ct)) : t ∈ R

}
,

and hence is a proper (one-dimensional) subset of Fs,t. Therefore Theorem
1.2 is somewhat weaker than an orbital stability result for the solitary waves
in Fs,t.

According to part (iv) of Theorem 1.2, in the case when τ1 = 0, each
element (Φ, ψ) of Fs,t has a non-trivial second component ψ. However, we
have not been able to establish this in the case when τ1 > 0. Even if Fs,t
were to consist solely of solitary waves of the form (Φ, 0), however, it would
still be of interest to know that Fs,t is stable in the sense described in part
(v).

Theorem 1.2 generalizes the stability results of [8], which treated the case
when τ1 = 0, p = 1, and α = 1/6; and of [2], which treated the case when
τ1 = 0, p = 1, and α is in some neighborhood of 1/6. We also note the
interesting paper of Angulo [3], which proves stability by a different method
in the case when τ1 = 0, p = 1, α > 0, and the wavespeed σ appearing in
(1.8) is sufficiently small.

The remainder of the paper is organized as follows. In Section 2, after
a number of preparatory lemmas, including Byeon and Garrisi’s rearrange-
ment lemma, we prove assertions (i) through (iv) of Theorem 1.1. Section 3
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also begins with some preparatory lemmas, and then concludes with a proof
of assertions (i) through (v) of Theorem 1.2.

Notation. For 1 ≤ p ≤ ∞, we denote by Lp the space of all measurable
functions f on R for which the norm |f |p is finite, where

|f |p =
(∫ ∞

−∞
|f |p dx

)1/p

for 1 ≤ p <∞

and |f |∞ is the essential supremum of |f | on R. Because the L2 norm
appears frequently below, we use the special notation ∥f∥ for it. That is,

∥f∥ =

(∫ ∞

−∞
|f |2 dx

)1/2

.

We say that a function f defined on R is C∞ if f and all its derivatives
of all orders exist everywhere on R.

We denote by H1
C = H1

C(R) the Sobolev space of all complex-valued func-
tions f defined on R such that f and its distributional derivative f ′ are both
in L2. The norm ∥ · ∥1 on H1

C is defined by

∥f∥1 =
(∫ ∞

−∞

(
|f |2 + |f ′|2

)
dx

)1/2

.

We denote the space of all real-valued functions f in H1
C by H1, and we

define Y to be the product space

Y = H1
C ×H1,

furnished with the product norm, which we denote by ∥.∥Y . That is,

∥(h, g)∥2Y = ∥h∥21 + ∥g∥21.

We occasionally use below the operation of convolution of two functions,
here denoted by the symbol ⋆ and defined by

(1.16) f ⋆ g(x) =

∫ ∞

−∞
f(x− y)g(y) dy.

In the estimates below, the letter C will frequently be used to denote
various constants whose actual values are not important for our purposes.
In particular, the value of C may differ from line to line.

2. Existence of Solitary-Wave Solutions

In this section, we prove Theorem 1.1. We assume throughout the section,
unless otherwise stated, that the assumptions of Theorem 1.1 hold for the
constants α, τ1, τ2, p, q, s, and t.

Lemma 2.1. Every minimizing sequence for I(s, t) is bounded in Y . Fur-
thermore, one has −∞ < I(s, t) < 0.



8 J. ALBERT AND S. BHATTARAI

Proof. First, observe that if {(fn, gn)} is a minimizing sequence for I(s, t),
then ∥fn∥ and ∥gn∥ are bounded. From the Gagliardo-Nirenberg inequality
(see, for example, Theorem 9.3 of [13]), we have that

(2.1) |fn|q+2
q+2 ≤ C∥fnx∥q/2∥fn∥(q+4)/2,

and since ∥fn∥ is constant, it follows that

(2.2) |fn|q+2
q+2 ≤ C∥(fn, gn)∥q/2Y .

Similarly,

(2.3) |gn|p+2
p+2 ≤ C∥gnx∥p/2 ≤ C∥(fn, gn)∥p/2Y .

(Here, as throughout the paper, C denotes various constants which may
depend on s and t but are independent of fn and gn.) Moreover, the same
estimate (2.2) with q replaced by 2 shows that

|fn|44 ≤ C∥fnx∥ · ∥fn∥3 ≤ C∥fnx∥,

so by Hölder’s inequality,

(2.4)

∫ ∞

−∞
|fn|2|gn| dx ≤ |fn|24 · ∥gn∥ ≤ C∥fnx∥1/2 ≤ C∥(fn, gn)∥1/2Y .

Now

∥(fn, gn)∥2Y = ∥fn∥21 + ∥gn∥21

= E(fn, gn) +

∫ ∞

−∞

(
β1|fn|q+2 + β2g

p+2
n + α|fn|2gn

)
dx+ ∥fn∥2 + ∥gn∥2,

and E(fn, gn) is bounded since {(fn, gn)} is a minimizing sequence. There-
fore from (2.2), (2.3), and (2.4) it follows that

∥(fn, gn)∥2Y ≤ C
(
1 + ∥(fn, gn)∥1/2Y + ∥(fn, gn)∥q/2Y + ∥(fn, gn)∥p/2Y

)
.

Since q/2 < 2 and p/2 < 2, we deduce that ∥(fn, gn)∥Y is bounded.
Once we have shown that {(fn, gn)} is bounded in Y , a finite lower

bound on E(fn, gn) also follows immediately from (2.2), (2.3), and (2.4).
So I(s, t) > −∞.

Finally, to see that I(s, t) < 0, choose (f, g) ∈ Y such that ∥f∥2 = s,
∥g∥2 = t, and f(x) > 0 and g(x) > 0 for all x ∈ R. For each θ > 0,

the functions fθ(x) = θ1/2f(θx) and gθ(x) = θ1/2g(θx) satisfy ∥fθ∥2 = s,
∥gθ∥2 = t, and

E(fθ, gθ) =

∫ ∞

−∞

(
|fθx|2 + g2θx − β1|fθ|q+2 − β2g

p+2
θ − α|fθ|2gθ

)
dx

≤ θ2
∫ ∞

−∞

(
|fx|2 + g2x

)
dx− θ1/2

∫ ∞

−∞
α|f |2g dx.

Hence, by taking θ sufficiently small, we get E(fθ, gθ) < 0, proving that
I(s, t) < 0. �
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Lemma 2.2. Suppose (fn, gn) is a minimizing sequence for I(s, t), where
t > 0 and s ≥ 0. (Note that we do not require s > 0 here.) Then there exists
δ > 0 such that ∥gnx∥ ≥ δ for all sufficiently large n.

Proof. If the conclusion is not true, then by passing to a subsequence we
may assume there exists a minimizing sequence for which lim

n→∞
∥gnx∥ = 0.

From (2.3) it then follows that

lim
n→∞

∫ ∞

−∞
gp+2
n dx = 0.

Moreover, because of the elementary estimate

|gn|∞ ≤ C∥gn∥1/2∥gnx∥1/2,
we can write, in place of (2.4),

(2.5)

∫ ∞

−∞
|fn|2|gn| dx ≤ C∥fn∥2∥gn∥1/2∥gnx∥1/2 ≤ C∥gnx∥1/2,

from which it follows that

lim
n→∞

∫ ∞

−∞
|fn|2gn dx = 0.

Hence

(2.6)

I(s, t) = lim
n→∞

E(fn, gn)

= lim
n→∞

∫ ∞

−∞

(
|fnx|2 − β1|fn|q+2

)
dx.

Now let ψ be any non-negative function such that ∥ψ∥2 = t. For every

θ > 0, the function ψθ(x) = θ1/2ψ(θx) satisfies ∥ψθ∥2 = t, so that I(s, t) ≤
E(fn, ψθ) for all n. On the other hand, if we define

(2.7) η = θ2
∫ ∞

−∞
ψ2
x dx− β2θ

p/2

∫ ∞

−∞
ψp+2 dx,

then since p/2 < 1, by fixing θ > 0 sufficiently small we can arrange that

(2.8) η < 0.

Then for all n ∈ N,
I(s, t) ≤ E(fn, ψθ)

=

∫ ∞

−∞

(
|fnx|2 − β1|fn|q+2 − θ1/2α|fn|2ψ

)
dx+ η

≤
∫ ∞

−∞

(
|fnx|2 − β1|fn|q+2

)
dx+ η.

Therefore

I(s, t) ≤ lim
n→∞

∫ ∞

−∞

(
|fnx|2 − β1|fn|q+2

)
dx+ η,

which contradicts (2.6) and (2.8). �
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Lemma 2.3. Suppose g(x) is an integrable function on R such that

(2.9)

∫ ∞

−∞
g(x) dx > 0.

Then for every s > 0 there exists f ∈ H1 such that ∥f∥2 = s and∫ ∞

−∞

(
f2x − αf2g

)
dx < 0.

Proof. Let ψ be an arbitrary smooth, non-negative function with compact
support such that ψ(0) = 1 and ∥ψ∥2 = s, and for θ > 0 define ψθ(x) =

θ1/2ψ(θx). Then ∥ψθ∥2 = s, and

(2.10)

∫ ∞

−∞

(
ψ2
θx − ψ2

θg
)
dx = θ2

∫ ∞

−∞
ψ2
x dx− θ

∫ ∞

−∞
ψ(θx)2g(x) dx.

But, by the Dominated Convergence Theorem,

lim
θ→0

∫ ∞

−∞
ψ(θx)2g(x) dx = B,

where B =

∫ ∞

−∞
g(x) dx > 0. Therefore from (2.10) it follows that

(2.11)

∫ ∞

−∞

(
ψ2
θx − ψ2

θg
)
dx ≤ θ2

∫ ∞

−∞
ψ2
x dx− θB/2

for all θ in some neighborhood of 0. Since the quantity on the right-hand
side can be made negative by taking θ sufficiently small, the desired f can
be found by taking f = ψθ for a sufficiently small value of θ. �

Lemma 2.4. Define J : H1 → R by

(2.12) J(g) =

∫ ∞

−∞

(
g2x − β2g

p+2
)
dx.

Let t > 0, and let {gn} be any sequence of functions in H1 such that

lim
n→∞

∥gn∥2 = t,

and

lim
n→∞

J(gn) = inf
{
J(g) : g ∈ H1 and ∥g∥2 = t

}
.

Then there exists a subsequence {gnk
} and a sequence of real numbers yk

such that gnk
(x+ yk) converges strongly in H1 norm to g0(x), where

(2.13) g0(x) =

(
λ

β2

)1/p

sech2/p

(√
λpx

2

)
,

and λ > 0 is chosen so that ∥g0∥2 = t. In particular,

(2.14) J(g0) = inf
{
J(g) : g ∈ H1 and ∥g∥2 = t

}
.
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Proof. The proof that some subsequence of gn must converge, after suitable
translations, strongly in H1 norm is by now a standard exercise in the use
of the method of concentration compactness. A proof in the case p = 1
appears, for example, in Theorem 2.9 of [1], or Theorem 3.13 of [2]. A
similar proof, with obvious alterations, works for all p ∈ [1, 4) because for
such p the Gagliardo-Nirenberg inequality (2.3) permits one to obtain a
uniform bound on ∥gn∥1.

Denote the translated subsequence of {gn} which converges strongly by
{gnk

(x+ ỹk)}, and let ψ ∈ H1 be its limit. Then ψ must satisfy

(2.15) J(ψ) = inf
{
J(g) : g ∈ H1 and ∥g∥2 = t

}
,

and must also be a solution of the Euler-Lagrange equation

(2.16) −2ψ′′ − (p+ 2)β2ψ
p+1 = −2λψ

for some real number λ. Equation (2.16) can be explicitly integrated to
show that, in order for ψ to be in H1, λ must be positive and ψ must be
a translate of the function g0 defined in (2.13), say ψ(x) = g0(x + y0) for
some y0 ∈ R. Then (2.14) follows from (2.15). Also, defining yk = ỹk − y0,
we have that gnk

(x+ yk) converges to g0 in H1. �

Lemma 2.5. Suppose β1 > 0, and define J̃ : H1
C → R by

(2.17) J̃(f) =

∫ ∞

−∞

(
|fx|2 − β1|f |q+2

)
dx.

Let s > 0, and let {fn} be any sequence of functions in H1
C such that

lim
n→∞

∥fn∥2 = s,

and

lim
n→∞

J̃(fn) = inf
{
J̃(f) : f ∈ H1

C and ∥f∥2 = s
}
.

Then there exists a subsequence {fnk
} of {fn}, a sequence of real numbers

yk, and a real number θ such that e−iθfnk
(x+ yk) converges strongly in H1

C
norm to f0(x), where

(2.18) f0(x) =

(
λ

β1

)1/q

sech2/q

(√
λpx

2

)
,

and λ > 0 is chosen so that ∥f0∥2 = s. In particular,

(2.19) J̃(f0) = inf
{
J̃(f) : f ∈ H1

C and ∥f∥2 = s
}
.

Proof. The comments in the first paragraph of the proof of Lemma 2.4 apply
as well to J̃ as to J , since the proof alluded to there works here with no
formal changes: the only difference is that now ∥fn∥ represents the modulus
of a complex-valued function. Therefore we can conclude that there exists a
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subsequence {fnk
} and a sequence of real numbers ỹk such that {fnk

(x+ỹk)}
converges strongly in H1

C to a (now complex-valued) function ϕ for which

(2.20) J̃(ϕ) = inf
{
J(f) : f ∈ H1

C and ∥f∥2 = t
}
,

and for which the Euler-Lagrange equation

(2.21) −2ϕ′′ − (q + 2)β1ϕ
q+1 = −2λϕ

holds, where here λ is again a real number.
It is proved in Theorem 8.1.6 of [7] that for every solution ϕ of (2.21), there

exists a real number θ such that ϕ(x) = eiθϕ̃(x) on R, where ϕ̃(x) is real-
valued and positive (the same argument used there is also given below in the

proof of part (iv) of Theorem 1.1). The H1 function ϕ̃ also satisfies (2.21),
and so, as in the proof of Lemma 2.4, it follows that there exists y0 ∈ R
such that ϕ̃(x) = f0(x + y0) on R, where f0 is as defined in (2.18). Since

J̃(ϕ) = J̃(ϕ̃), then (2.19) follows from (2.20). Also, if we define yk = ỹk−y0,
then we have that e−iθfnk

(x+ yk) converges in H
1
C to f0. �

Lemma 2.6. Suppose (fn, gn) is a minimizing sequence for I(s, t), where
s > 0 and t ≥ 0. If t > 0, or t = 0 and β1 > 0, then there exists δ > 0
such that ∥fnx∥ ≥ δ for all sufficiently large n. If t = 0 and β1 = 0, then
I(s, t) = 0.

Proof. As in the proof of Lemma (2.2), we argue by contradiction. If the
conclusion is not true, then by passing to a subsequence we may assume
there exists a minimizing sequence for which lim

n→∞
∥fnx∥ = 0. From (2.1)

and (2.4) we have that

(2.22) lim
n→∞

∫ ∞

−∞
|fn|2gn = lim

n→∞

∫ ∞

−∞
|fn|q+2 = 0,

so

(2.23) I(s, t) = lim
n→∞

∫ ∞

−∞

(
g2nx − β2g

p+2
n

)
dx.

In case t > 0, we have from (2.14) that

(2.24) I(s, t) ≥ J(g0),

where g0 is as (2.13), and therefore g0 is integrable with positive integral.
Therefore, by Lemma 2.3 there exists f ∈ H1 such that ∥f∥2 = s and

(2.25)

∫ ∞

−∞

(
f2x − αf2g0

)
dx < 0.

It follows that
(2.26)

I(s, t) ≤ E(f, g0) =

∫ ∞

−∞

(
f2x − αf2g0 − β1|f |q+2

)
dx+ J(g0) < J(g0),

which contradicts (2.24).
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In case t = 0 and β1 > 0, then by (2.23), I(s, t) = 0. On the other hand
I(s, t) = I(s, 0) is the infimum of

(2.27) E(f, 0) =

∫ ∞

−∞

(
|fx|2 − β1|f |q+2

)
dx

over all f ∈ H1
C satisfying ∥f∥2 = s. Let f be any non-negative function in

H1 such that ∥f∥2 = s, and define fθ(x) = θ1/2f(θx). Then

(2.28) E(fθ, 0) = θ2
∫ ∞

−∞
f2x dx− β1θ

q/2

∫ ∞

−∞
f q+2 dx,

and since q < 4, we can make the right-hand side negative by choosing a
sufficiently small value of θ. Therefore I(s, t) < 0, giving a contradiction.

Finally, if t = 0 and β1 = 0, then I(s, t) = I(s, 0) is the infimum of

(2.29) E(f, 0) =

∫ ∞

−∞
|fx|2 dx

over all f in H1
C such that ∥f∥2 = s. This infimum is clearly non-negative,

but on the other hand if we replace f by fθ, as defined in the preceding para-
graph, then we can make E(fθ, 0) arbitrarily small by taking θ sufficiently
small. Hence I(s, t) = 0. �
Lemma 2.7. Suppose (fn, gn) is a minimizing sequence for I(s, t), where
s > 0 and t > 0. Then there exists δ > 0 such that for all sufficiently large
n, ∫ ∞

−∞

(
|fnx|2 − β1|fn|q+2 − α|fn|2gn

)
dx ≤ −δ.

Proof. If the conclusion is false, then by passing to a subsequence we may
assume that there exists a minimizing sequence (fn, gn) for which

(2.30) lim inf
n→∞

∫ ∞

−∞

(
|fnx|2 − β1|fn|q+2 − α|fn|2gn

)
dx ≥ 0,

and so

(2.31) I(s, t) = lim
n→∞

E(fn, gn) ≥ lim inf
n→∞

∫ ∞

−∞

(
g2nx − β2g

p+2
n

)
dx.

Define J and g0 as in Lemma 2.4. Then (2.31) implies that

(2.32) I(s, t) ≥ J(g0).

On the other hand, by Lemma 2.3, there exists f ∈ H1 such that ∥f∥2 = s
and ∫ ∞

−∞

(
f2x − αf2g0

)
dx < 0.

Therefore

(2.33) I(s, t) ≤ E(f, g0) ≤
∫ ∞

−∞

(
f2x − αf2g0

)
dx+ J(g0) < J(g0),

which contradicts (2.32). �
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Lemma 2.8. For all (f, g) ∈ Y , one has E(|f |, |g|) ≤ E(f, g).

Proof. It is a standard fact from analysis that if f ∈ H1
C, then |f(x)| is in

H1 and

(2.34)

∫ ∞

−∞
||f |x|2 dx ≤

∫ ∞

−∞
|fx|2 dx.

(For a proof, the reader may consult Theorem 6.17 of [16].) Since β1, β2,
and α are non-negative numbers, the Lemma follows immediately. �

The next two lemmas state that E(f, g) decreases when f and g are
replaced by |f | and |g|, and when |f | and |g| are symmetrically rearranged.
Recall that, for a non-negative function w : R → [0,∞), if {x : w(x) > y}
has finite measure m(w, y) for all y > 0, then the symmetric decreasing
rearrangement w∗ of w is defined by

(2.35) w∗(x) = inf {y ∈ (0,∞) :
1

2
m(w, y) ≤ x}

(or see page 80 of [16] for a different but equivalent definition). For (f, g) in
Y , both |f | and |g| are in H1, and hence |f |∗ and |g|∗ are well-defined.

Lemma 2.9. For all (f, g) ∈ Y , one has E(|f |∗, |g|∗) ≤ E(f, g).

Proof. This follows from classic estimates on the symmetric rearrangements
of functions. A basic fact about rearrangements is that they preserve Lp

norms (cf. page 81 of [16]), so that

(2.36)

∫ ∞

−∞
(|f |∗)q+2 dx =

∫ ∞

−∞
|f |q+2 dx

and

(2.37)

∫ ∞

−∞
(|g|∗)p+2 dx =

∫ ∞

−∞
|g|p+2 dx.

Another basic inequality about rearrangements, Theorem 3.4 of [16], implies
that

(2.38)

∫ ∞

−∞
(|f |∗)2|g|∗ dx ≥

∫ ∞

−∞
|f |2|g| dx.

Finally, from Lemma 7.17 of [16] we have that∫ ∞

−∞
|(|f |∗)x|2 dx ≤

∫ ∞

−∞
||f |x|2 dx,

and similarly for g(x). In light of these facts, and because α, β1, and β2 are
all non-negative, it follows from Lemma 2.8 that E(|f |∗, |g|∗) ≤ E(f, g).

�
We will also make crucial use of the following Lemma, due to Garrisi

[11] (see also the N -dimensional version given in Byeon [6]). We include a
proof here since our version of the lemma differs slightly from that stated
by Garrisi.
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Lemma 2.10. Suppose u and v are non-negative, even, C∞ functions with
compact support in R, which are non-increasing on {x : x ≥ 0}. Let x1 and
x2 be numbers such that u(x+x1) and v(x+x2) have disjoint supports, and
define

w(x) = u(x+ x1) + v(x+ x2).

Let w∗ : R → R be the symmetric decreasing rearrangement of w. Then the
distributional derivative (w∗)′ of w∗ is in L2, and satisfies

(2.39) ∥(w∗)′∥2 ≤ ∥w′∥2 − 3

4
min{∥u′∥2, ∥v′∥2}.

Proof. First consider the case when u′(x) < 0 for all x ∈ (0, c) and v′(x) < 0
for all x ∈ (0, d), where [−c, c] is the support of u and [−d, d] is the support of
v. Let a = sup{u(x) : x ∈ R} and b = sup{v(x) : x ∈ R}. By interchanging
u and v if necessary, we may assume that a ≤ b.

Define zu : [0,∞) → [0, c] by

(2.40) zu(y) = inf{x ∈ [0,∞) : u(x) ≤ y}.
For y ∈ (0, a), zu(y) is equal to the unique number x(y) ∈ (0, c) such that
u(x(y)) = y. The function zu is differentiable on (0, a), with derivative

z′u(y) =
1

u′(x(y))
< 0,

and we have

∥u′∥2 = 2

∫ c

0
(u′(x))2 dx

= 2

∫ a

0

−1

z′u(y)
dy

= 2

∫ a

0

1

|z′u(y)|
dy.

For y ≥ a we have zu(y) = 0.
Similarly, we define zv : [0,∞) → [0, d] by

(2.41) zv(y) = inf{x ∈ [0,∞) : v(x) ≤ y}.
Then

y′v(v(x)) =
1

v′(x)
< 0

on (0, d), and

∥v′∥2 = 2

∫ b

0

1

|z′v(y)|
dy.

Now, for each y ∈ [0,∞), define

(2.42) z(y) = zu(y) + zv(y).

Then z is continuous on [0,∞) and differentiable, with strictly negative
derivative, on (0, a) and on (a, b). Therefore z is strictly decreasing on [0, b],
and so its restriction to [0, b] has an inverse function z−1 : [0, c+ d] → [0, b],
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with z−1([0, c]) = [a, b] and z−1([c, c + d]) = ([0, a]). From (2.35) and the
definition of w, using the fact that u(x+ x1) and v(x+ x+ 2) have disjoint
supports, we see that w∗ is supported on [0, c + d] and coincides with z−1

there. In particular, for all y ∈ (0, a) ∪ (a, b), we have

(w∗)′(z(y)) =
1

z′u(y) + z′v(y)
.

Now making use of the fact that for all positive numbers µ and ν, there
holds the elementary inequality

2

µ+ ν
≤ 1

2

(
1

µ
+

1

ν

)
,

we have the following computation:

∥(w∗)′∥2 = 2

∫ c+d

0
((w∗)′(x))2 dx

= 2

∫ c

0
((w∗)′(x))2 dx+ 2

∫ c+d

c
((w∗)′(x))2 dx

= 2

∫ a

0

1

|z′u(y)|+ |z′v(y)|
dy + 2

∫ b

a

1

|z′v(y)|
dy

≤ 1

2

∫ a

0

(
1

|z′u(y)|
+

1

|z′v(y)|

)
dy + 2

∫ b

a

1

|z′v(y)|
dy

<
1

2

∫ a

0

1

|z′u(y)|
dy + 2

∫ a

0

1

|z′v(y)|
dy + 2

∫ b

a

1

|z′v(y)|
dy

=
1

2

∫ a

0

1

|z′u(y)|
dy + 2

∫ b

0

1

|z′v(y)|
dy

=
1

2

∫ c

0
(u′(x))2 dx+ 2

∫ d

0
(v′(x))2 dx

= 2

∫ c

0
(u′(x))2 dx+ 2

∫ d

0
(v′(x))2 dx− 3

2

∫ c

0
(u′(x))2 dx

=
1

2
∥u′∥2 + 1

2
∥v′∥2 − 3

4
∥u′∥2

=
1

2
∥w′∥2 − 3

4
∥u′∥2

≤ 1

2
∥w′∥2 − 3

4
min{∥u′∥2, ∥v′∥2}.

Thus (2.39) is proved in the special case when u′ < 0 on (0, c) and v′ < 0
on (0, d).

Now we consider the general case, which we can reduce to the case treated
above as follows.

Let ϕ1(x) be a smooth, even function such that ϕ1(x) > 0 for x ∈ (0, c)
and ϕ1(x) = 0 for x ≥ c, and such that ϕ1(x) is strictly decreasing on (0, c).
Let ϕ2(x) be a similar function with support on (0, d). For each ϵ > 0,
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define uϵ(x) = u(x) + ϵϕ1(x) and vϵ(x) = v(x) + ϵϕ2(x), and let wϵ(x) =
uϵ(x)+vϵ(x−T ). Since u′ ≤ 0 and ϕ′1 < 0 on (0, c), then u′ϵ = u′+ϵϕ′1 < 0 on
(0, c), so uϵ is strictly decreasing on (0, c). Similarly, vϵ is strictly decreasing
on (0, d). So, by what has been proved above,

(2.43) ∥(w∗
ϵ )

′∥2 ≤ ∥w′
ϵ∥2 −

3

4
min{∥u′ϵ∥2, ∥v′ϵ∥2}.

Now take limits on both sides of (2.43) as ϵ goes to zero. By the dominated
convergence theorem, the right hand side approaches

∥w′∥2 − 3

4
min{∥u′∥2, ∥u′∥2}.

Also, since wϵ converges in H
1 norm on R to w, then by a theorem of Coron

[10], w∗
ϵ converges in H1 norm to w∗. Therefore the left-hand side of (2.39)

converges to ∥(w∗)′∥2, and (2.39) is proved. �

Lemma 2.11. The functionals E, G, and H are continuous from Y to R.

Proof. This follows easily (for all p ≥ 0 and q ≥ 0) from the Sobolev embed-
ding theorem, in particular using the fact that the inclusion of H1 in L∞ is
continuous. �

Lemma 2.12. Let s1, s2, t1, t2 ≥ 0 be given, and suppose that s1 + s2 > 0,
t1 + t2 > 0, s1 + t1 > 0, and s2 + t2 > 0. Then

(2.44) I(s1 + s2, t1 + t2) < I(s1, t1) + I(s2, t2).

Proof. We claim first that, for i = 1, 2, we can choose minimizing sequences

(f
(i)
n , g

(i)
n ) for I(si, ti) such that for all n ∈ N, f (i)n and g

(i)
n

(i) are real-valued and non-negative on R;
(ii) belong to H1 and have compact support;
(iii) are even functions;
(iv) are non-increasing functions of x for x ≥ 0;
(v) are C∞ functions; and

(vi) satisfy ∥f (i)n ∥ = si and ∥g(i)n ∥ = ti.

To prove this, we can take i = 1, since the proof for i = 2 is identical. Also
we may assume that s1 > 0 and t1 > 0, since otherwise we can simply take

f
(1)
n or g

(1)
n to be identically zero on R.

Start with an arbitrary minimizing sequence (w
(1)
n , z

(1)
n ) for I(s1, t1). Since

functions with compact support are dense in H1, and E : Y → R is con-

tinuous, we can approximate (w
(1)
n , z

(1)
n ) by functions (w

(2)
n , z

(2)
n ) which have

compact support and which still form a minimizing sequence for I(s1, t1).
Then from Lemma 2.9 it follows that the sequence defined by

(w(3)
n , z(3)n ) = (|w(2)

n |∗, |z(2)n |∗)

is still a minimizing sequence for I(s1, t1), and for each n, w
(3)
n and z

(3)
n have

the properties (i) through (iv) listed above.
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Next, observe that if f and ψ are any two functions with properties (i)
through (iv), then their convolution f ⋆ ψ, defined as in (1.16), also satisfies
properties (i) through (iv). Moreover, as is well known, if we define ψϵ =
(1/ϵ)ψ(x/ϵ) for ϵ > 0, and choose ψ such that

∫∞
−∞ ψ(x) dx = 1, then

convolution with ψϵ is an “approximation to the identity”: that is, the
functions f ⋆ ψϵ converge strongly to f in H1 as ϵ → 0. Finally, if ψ is
C∞ then f ⋆ ψϵ will be C∞ also. Therefore by choosing ψ(x) to be any
non-negative, C∞, even function with compact support, which is decreasing
for x ≥ 0, and satisfies

∫∞
−∞ ψ(x) dx = 1, and defining

(w(4)
n , z(4)n ) = (w(3)

n ⋆ ψϵn , z
(3)
n ⋆ ψϵn),

with ϵn chosen appropriately small for n large, we obtain a minimizing

sequence (w
(4)
n , z

(4)
n ) for I(s1, t1) that satisfies not only the properties (i)

through (iv) above, but also property (v).
Finally, we obtain the desired minimizing sequence satisfying properties

(i) through (vi) by setting

f (1)n =
(si)

1/2w
(4)
n

∥w(4)
n ∥

and g(1)n =
(ti)

1/2z
(4)
n

∥g(i)n ∥
,

respectively, which is possible since for n sufficiently large we have ∥w(4)
n ∥ > 0

and ∥z(4)n ∥ > 0.

Next, choose for each n a number xn such that f
(1)
n (x) and f̃

(2)
n (x) =

f
(2)
n (x + xn) have disjoint support, and g

(1)
n (x) and g̃

(2)
n (x) = g

(2)
n (x + xn)

have disjoint support. Define

fn =
(
f (1)n + f̃ (2)n

)∗
,

gn =
(
g(1)n + g̃(2)n

)∗
.

Then ∥fn∥2 = s1 + s2 and ∥gn∥2 = t1 + t2, so

(2.45) I(s1 + s2, t1 + t2) ≤ E(fn, gn).

On the other hand, from Lemma 2.10 we have that
(2.46)∫ ∞

−∞

(
f2nx + g2nx

)
dx ≤

∫ ∞

−∞

(
(f (1)n + f̃ (2)n )2x + (g(1)n + g̃(2)n )2x

)
dx−Kn

=

∫ ∞

−∞

(
(f (1)nx )

2 + (f̃ (2)nx )
2 + (g(1)nx )

2 + (g̃(2)nx )
2
)
dx−Kn,

where

(2.47) Kn =
3

4

(
min

{
∥f (1)nx ∥2, ∥f (2)nx ∥2

}
+min

{
∥g(1)nx ∥2, ∥g(2)nx ∥2

})
.
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Furthermore, from the properties (2.37), (2.36), and (2.38) of rearrange-
ments, we have that

(2.48)

∫ ∞

−∞
|fn|q+2 dx =

∫ ∞

−∞
|f (1)n |q+2 dx+

∫ ∞

−∞
|f (2)n |q+2 dx∫ ∞

−∞
gp+2
n dx =

∫ ∞

−∞
(g(1)n )p+2 dx+

∫ ∞

−∞
(g(2)n )q+2 dx∫ ∞

−∞
|fn|2gn dx ≥

∫ ∞

−∞
|f (1)n |2g(1)n dx+

∫ ∞

−∞
|f (2)n |2g(2)n dx,

and therefore, combining with (2.45) and (2.46), we have that for every n,

(2.49) I(s1 + t1, s2 + t2) ≤ E(fn, gn) ≤ E(f (1)n , g(1)n ) + E(f (2)n , g(2)n )−Kn.

It follows by taking the limit superior on the right-hand side that

(2.50) I(s1 + t1, s2 + t2) ≤ I(s1, t1) + I(s2, t2)− lim inf
n→∞

Kn.

Since t1 + t2 > 0, then either t1 and t2 are both positive, or one of t1 and
t2 is zero and the other is positive. In the latter case, we may assume that
t1 = 0 and t2 > 0, since otherwise we can simply switch t1 and t2. Then
we will argue separately according as to whether s2 is positive or zero. To
prove the theorem, then, it suffices to consider the following three cases: (i)
t1 > 0 and t2 > 0; (ii) t1 = 0, t2 > 0, and s2 > 0; and (iii) t1 = 0, t2 > 0,
and s2 = 0.

In case (i), when t1 > 0 and t2 > 0, it follows from Lemma 2.2 that
there exist numbers δ1 > 0 and δ2 > 0 such that for all sufficiently large n,

∥(g(1)n )x∥ ≥ δ1 and ∥(g(2)n )x∥ ≥ δ2. (Note that by Lemma 2.6, this is still
true even when s1 = 0 or s2 = 0.) So, letting δ = min(δ1, δ2) > 0, (2.47)
gives Kn ≥ 3δ/4 for all sufficiently large n. From (2.50) we then have that

(2.51) I(s1+ t1, s2+ t2) ≤ I(s1, t1)+ I(s2, t2)− 3δ/4 < I(s1, t1)+ I(s2, t2),

as desired.
In case (ii), we have t1 = 0, t2 > 0, s2 > 0, and, since s1 + t1 > 0 by

assumption, s1 > 0 also. By Lemma 2.6 there exists δ1 > 0 such that for all

sufficiently large n, ∥(f (1)n )x∥ ≥ δ1.
If, in case (ii), β1 > 0, then by Lemma 2.6 there also exists δ2 > 0 such

that for all sufficiently large n, ∥f (2)nx ∥ ≥ δ2. Letting δ = min(δ1, δ2) > 0, we
get Kn ≥ 3δ/4 for large n, and (2.51) follows from (2.50) as in case (i).

On the other hand, if in case (ii) we have β1 = 0, then by Lemma 2.6 we
have I(s1, t1) = I(s1, 0) = 0, and I(s1 + s2, t1 + t2) = I(s1 + s2, t2) is the
infimum of

(2.52) E(f, g) =

∫ ∞

−∞

(
|fx|2 + g2x − β2g

p+2 − α|f |2g
)
dx
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over all f ∈ H1
C and g ∈ H1 such that ∥f∥2 = s1 + s2 and ∥g∥2 = t2. By

Lemma 2.7, there exists δ > 0 such that for all sufficiently large n,∫ ∞

−∞

(
|f (2)nx |2 − α|f (2)n |2g(2)n

)
dx ≤ −δ.

Let

(2.53) fn =

√
s1 + s2
s2

f (2)n ;

then ∥fn∥2 = s1+ s2 and from (2.52) we see that, for all sufficiently large n,
(2.54)

I(s1 + s2, t2) ≤ E(fn, g
(2)
n ) = E(f (2)n , g(2)n ) +

s1
s2

∫ ∞

−∞

(
|f (2)nx |2 − α|f (2)n |2g(2)n

)
dx

≤ E(f (2)n , g(2)n )− s1δ

s2
.

This implies, after taking the limit as n→ ∞, that

(2.55) I(s1 + s2, t2) ≤ I(s2, t2)−
s1δ

s2
< I(s2, t2) = I(s1, t1) + I(s2, t2),

as desired. Thus the proof is complete in case (ii).
In case (iii), we have s1 > 0 and t2 > 0, and we have to prove

(2.56) I(s1, t2) < I(s1, 0) + I(0, t2).

Let g0 be as defined in Lemma 2.4 with t = t2, so that I(0, t2) = J(g0).

If β1 > 0, we have from Lemma 2.5 that I(s1, 0) = J̃(f0), where f0 is as
defined in (2.18) with s = s1. Clearly,∫ ∞

−∞
|f0|2g0 dx > 0,

and so

(2.57)
I(s1, t2) ≤ E(f0, g0) = J̃(f0) + J(g0) +

∫ ∞

−∞
|f0|2g0 dx

< J̃(f0) + J(g0) = I(s1, 0) + I(0, t2),

as desired.
On the other hand, if β1 = 0, then I(s1, 0) = 0 by Lemma 2.6. By Lemma

2.3, there exists f ∈ H1 such that ∥f∥2 = s1 and

(2.58)

∫ ∞

−∞

(
f2x − αf2g0

)
dx < 0,

and hence

(2.59) I(s1, t1) ≤ E(f, g0) =

∫ ∞

−∞

(
f2x − αf2g0

)
dx+ J(g0) < J(g0),

which proves (2.56). The proof of Lemma 2.12 is now complete in all cases.
�
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We now turn to the proof of Theorem 1.1, which, once the subadditivity
lemma 2.12 has been established, proceeds by largely the same argument as
in [2].

The first step is to establish the relative compactness, up to translations,
of minimizing sequences for I(s, t). Let {(fn, gn)} be a given minimizing
sequence, and define an associated sequence of functions ρn by

ρn = |fn|2 + g2n.

We then have ∫ ∞

−∞
ρn(x) dx = s+ t

for all n. The sequence of functions Mn : [0,∞) → [0, s+ t] defined by

Mn(r) = sup
y∈R

∫ y+r

y−r
ρn(x) dx.

is a uniformly bounded sequence of nondecreasing functions on [0,∞), and
therefore (by Helly’s selection theorem, for example) has a subsequence,
which we will still denote byMn, that converges pointwise to a nondecreasing
function M on [0,∞). Then

(2.60) γ = lim
r→∞

M(r)

exists and satisfies 0 ≤ γ ≤ s+ t.
We claim now that γ > 0. To prove this, we require the following lemma.

Lemma 2.13. Suppose wn is a sequence of functions which is bounded in
H1 and which satisfies, for some R > 0,

(2.61) lim
n→∞

sup
y∈R

∫ y+R

y−R
w2
n dx = 0.

Then for every r > 2,

lim
n→∞

|wn|r = 0.

Proof. This is a special case of Lemma I.1 of part 2 of [17], but for the sake
of completeness we give a proof here. Let

(2.62) ϵn = sup
y∈R

∫ y+R

y−R
w2
n dx,

so that lim
n→∞

ϵn = 0. For every y ∈ R, we have by standard Sobolev inequal-

ities (see Theorem 10.1 of [13]) that∫ y+R

y−R
|wn|r dx ≤ C

(∫ y+R

y−R
|wn|2 dx

)s(∫ y+R

y−R

(
w2
n + w2

nx

)
dx

)1+s

,
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where s = (r − 2)/4. It then follows from (2.61) that

(2.63)

∫ y+R

y−R
|wn|r dx ≤ Cϵsn

(∫ y+R

y−R

(
w2
n + w2

nx

)
dx

)
∥wn∥s1

≤ Cϵs
∫ y+R

y−R

(
w2
n + w2

nx

)
dx.

Now if we cover R by intervals of length R in such a way that each point of
R is contained in at most two of the intervals, then by summing (2.63) over
all the intervals in the cover, we obtain that

|wn|r ≤ 3Cϵsn∥wn∥21 ≤ Cϵsn,

from which the desired result follows. �
Next we prove that

(2.64) γ ̸= 0.

Indeed, suppose for the sake of contradiction that γ = 0. Then (2.61) holds
both for wn = |fn| and for wn = gn. Since both {|fn|} and {gn} are bounded
sequences in H1 by Lemma 2.1, then Lemma (2.13) implies that for every
r > 2, fn and gn converge to 0 in Lr norm. Since∣∣∣∣∫ ∞

−∞
|fn|2gn dx

∣∣∣∣ ≤ |fn|1/24 ∥gn∥

and ∥gn∥ is bounded, it follows also that

lim
n→∞

∫ ∞

−∞
|fn|2gn dx = 0.

Hence

(2.65) I(s, t) = lim
n→∞

E(fn, gn) ≥ lim inf
n→∞

∫ ∞

−∞

(
|fnx|2 + g2nx

)
dx ≥ 0,

contradicting Lemma 2.1. This proves (2.64).

Lemma 2.14. Suppose γ is defined as in (2.60). Then there exist numbers
s1 ∈ [0, s] and t1 ∈ [0, t] such that

(2.66) γ = s1 + t1

and

(2.67) I(s1, t1) + I(s− s1, t− t1) ≤ I(s, t).

Proof. Since the proof is almost the same as the proof of Lemma 3.10 of [2],
with only slight modifications, we just give an outline here, and refer to [2]
for the details. Let ρ and σ be smooth functions on R such that ρ2+σ2 = 1
on R, and ρ is identically 1 on [−1, 1] and is supported in [−2, 2]; and define
ρω(x) = ρ(x/ω) and σω(x) = σ(x/ω) for ω > 0. From the definition of
γ it follows that for given ϵ > 0, there exist ω > 0 and a sequence yn
such that, after passing to a subsequence, the functions (f

(1)
n (x), g

(1)
n (x)) =
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ρω(x − yn)(fn(x), gn(x)) and (f
(2)
n (x), g

(2)
n (x)) = σω(x − yn)(fn(x), gn(x))

satisfy ∥f (1)n ∥2 → s1, ∥g(1)n ∥2 → t1, ∥f (2)n ∥2 → s− s1, and ∥g(2)n ∥2 → t− t1 as
n→ ∞, where |(s1 + t1)− α| < ϵ, and

(2.68) E(f (1)n , g(1)n ) + E(f (2)n , g(2)n ) ≤ E(fn, gn) + Cϵ

for all n. To prove (2.68), one writes

E(f (1)n , g(1)n ) =

∫ ∞

−∞
ρ2ω
(
|fnx|2 + g2nx − β1|fn|q+2 − β2g

p+2
n − α|fn|2gn

)
dx

+

∫ ∞

−∞

(
(ρ′ω)

2(|fn|2 + g2n) + 2ρωρ
′
ω(Re fn(fn)x + gngnx)

)
dx

+

∫ ∞

−∞
(ρ2ω − ρq+2

ω )β1|fn|q+2 dx+

∫ ∞

−∞
(ρ2ω − ρp+2

ω )β2|gn|p+2 dx

+

∫ ∞

−∞
(ρ2ω − ρ3ω)α|fn|2gn dx,

and observes that the last two integrals on the right hand side can be made
arbitrarily uniformly small by taking ω sufficiently large. A similar estimate

obtains for E(f
(2)
n , g

(2)
n ), and (2.68) follows by adding the two estimates and

using ρ2ω + σ2ω = 1.
Now we show that the limit inferior as n → ∞ of the left-hand side of

(2.68) is greater than or equal to I(s1, t1)+ I(s− s1, t− t1). If s1, t1, s− s1,

and t− t1 are all positive, this follows by rescaling f
(i)
n and g

(i)
n for i = 1, 2

so that ∥f (1)n ∥2 = s1, ∥g(1)n ∥2 = t1, ∥f (2)n ∥2 = s − s1, and ∥g(2)n ∥2 = t − t1,
since the scaling factors tend to 1 as n → ∞. On the other hand, if s1 = 0
and t1 > 0 then as in (2.65) we have

lim
n→∞

E(f (1)n , g(1)n ) = lim
n→∞

∫ ∞

−∞

(
|f (1)nx |2 + (g(1)nx )

2 − β2(g
(1)
n )q+2

)
dx

≥ lim inf
n→∞

∫ ∞

−∞
((g(1)nx )

2 − β2(g
(1)
n )q+2) dx ≥ I(0, t1),

and similar estimates hold if t1, s− s1, or t− t1 are zero.
Taking then the limit inferior of the left-hand side and the limit of the

right-hand side of (2.68) as n→ ∞, we obtain

I(s1, t1) + I(s− s1, t− t1) ≤ I(s, t) + Cϵ,

which proves (2.67), as ϵ is arbitrary. �
We claim now that

(2.69) γ = s+ t.

Suppose to the contrary that γ < s + t. Let s1 and t1 be as defined in
Lemma 2.14, and let s2 = s−s1 and t2 = t−t1. Then s2+t2 = (s+t)−γ > 0,
and also (2.64) and (2.66) imply that s1+ t1 > 0. Moreover, s1+ s2 = s > 0
and t1 + t2 = t > 0. Therefore Lemma 2.12 implies that that (2.44) holds.
But this contradicts (2.67). Thus (2.69) is proved.
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Once (2.69) has been established, assertion (ii) of Theorem 1.1, concerning
the relative compactness of minimizing sequences up to translation, follows
from general principles. We again only outline the proof here and refer the
reader to [2] for more details. First, (2.69) immediately implies that for
some sequence yn of real numbers and some fixed subsequence of (fn, gn),
denoted again by (fn, gn), and for every k ∈ N, there exists ωk ∈ R such
that

(2.70)

∫ ωk

−ωk

(
|fn(x+ yn)|2 + gn(x+ yn)

2
)
dx ≥ s+ t− 1

k
.

for all n ∈ N. (In other words, the measures

µn = (|fn(x+ yn)|2 + gn(x+ yn)
2) dx

form a “tight” family on R, in the sense that for every ϵ > 0, there exists a
fixed compact set K such that µn(R\K) < ϵ for all n ∈ N.)

From (2.70) and the compactness of the embedding of H1 into L2 on finite
domains, it follows that some further subsequence of (fn(x+ yn), g(x+ yn))
converges, strongly in L2(R)×L2(R) and weakly in Y , to a limit (ϕ, ψ). Es-
timates such as (2.1) and (2.4), together with the weak lower semicontinuity
of the Hilbert space norm in Y , imply that

(2.71) lim
n→∞

E(fn, gn) ≥ E(ϕ, ψ);

but since (fn, gn) is a minimizing sequence, this in turn implies that

(2.72) lim
n→∞

E(fn, gn) = E(ϕ, ψ).

Therefore one has

lim
n→∞

∫ ∞

−∞

(
|fnx|2 + g2nx

)
dx =

∫ ∞

−∞

(
|ϕx|2 + ψ2

x

)
dx,

so (fn(x+ yn), gn(x+ yn)) converges strongly to (ϕ, ψ) in the norm of Y .
Since (ϕ, ψ) is in the minimizing set Ss,t for I(s, t), and so minimizes

E(u, v) subject to H(u) and H(v) being held constant, the Lagrange mul-
tiplier principle (see, for example, Theorem 7.7.2 of [18]) asserts that there
exist real numbers σ and c such that

(2.73) δE(ϕ, ψ) = σδH(ϕ) + cδH(ψ),

where δ denotes the Fréchet derivative. Computing the Fréchet derivatives
we see that this means that equations (1.8) hold, at least in the sense of
distributions. But since the right-hand sides of the equations in (1.8) are
continuous functions of the unknowns, distributional solutions are also clas-
sical solutions (cf. Lemma 1.3 of [22]). This then proves assertion (iii) of
Theorem 1.1.

It remains to prove the assertions in part (iv) of Theorem 1.1.
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Multiplying the first equation in (1.8) by ϕ and integrating over R, we
have after an integration by parts that

(2.74)

∫ ∞

−∞

(
|ϕ′|2 − τ1|ϕ|q+2 − α|ϕ|2ψ

)
dx = −σ

∫ ∞

−∞
|ϕ|2 dx = −σs.

In particular, it follows from (2.74) that σ is real. Similarly, multiplying the
second equation in (1.8) by ψ and integrating over R yields

(2.75)

∫ ∞

−∞

(
|ψ′|2 − τ2

p+ 1
ψp+2 − α

2
|ϕ|2ψ

)
dx = −c

∫ ∞

−∞
|ψ|2 dx = −ct.

From Lemma 2.7, applied to the constant sequence (fn, gn) = (ϕ, ψ), we
have that

(2.76)

∫ ∞

−∞

(
|ϕ′|2 − τ1|ϕ|q+2 − α|ϕ|2ψ

)
dx < 0,

and since τ1 = β1(q + 2)/2 > β1, it follows that the integral on the left-
hand side of (2.74) is negative, and so we must have σ > 0. Therefore,
a calculation with the Fourier transform shows that the operator −∂2x + σ
appearing in the first equation of (1.8) is invertible on H1

C, with inverse
given by convolution with the function

Kσ(x) =
1

2
√
σ
e−

√
σ|x|.

The first equation of (1.8) can then be rewritten in the form

(2.77) ϕ = Kσ ⋆ (τ1|ϕ|qϕ+ αϕψ) ,

where ⋆ denotes convolution as in (1.16).
Now we observe that it follows from the first equation in (1.8) that there

exist θ ∈ R and a real-valued function ϕ̃(x) such that ϕ(x) = eiθϕ̃(x) on R.
This is proved for the case τ1 = 0 in part (iii) of Theorem 2.1 of [2], and it
is easy to check that the same proof works as well when τ1 ̸= 0.

Note next that (ϕ̃, |ψ|) and (|ϕ̃|, |ψ|) are also in Ss,t, as follows from Lemma

(2.8). Therefore, if we let w = |ϕ̃|, then ϕ̃ and w satisfy the Lagrange
multiplier equations

(2.78)
−ϕ̃′′ + σϕ̃ = τ1w

qϕ̃+ αϕ̃|ψ|
−w′′ + σw = τ1w

qw + αw|ψ|.

(That the Lagrange multiplier σ is the same in both equations follows from
the fact that σ is determined by the equation (2.74), and this equation is
unchanged when ϕ is replaced by w.) Multiplying the first equation by w

and the second equation by ϕ̃, and subtracting the two equations, we find
that the wϕ̃′′ − ϕ̃w′′ = 0. Therefore the Wronskian wϕ̃′ − ϕ̃w′ of w and ϕ̃ is
constant, and since w and ϕ̃ are both in H1, this constant must be zero. So
w and ϕ̃ are constant multiples of each other, and hence ϕ̃, like w, must be
of one sign on R. By replacing θ by θ+ iπ if necessary, we can assume that
ϕ̃ ≥ 0 on R.
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We claim that

(2.79)

∫ ∞

−∞
|ϕ|2|ψ| dx =

∫ ∞

−∞
|ϕ|2ψ dx.

To prove this, note that since E(|ϕ|, |ψ|) = E(|ϕ|, ψ) = I(s, t), we have
(2.80)

α

∫ ∞

−∞
|ϕ|2(|ψ| − ψ) dx =

∫ ∞

−∞

(
(|ψx|2 − ψ2

x)− β2(|ψ|p+2 − ψp+2)
)
dx.

Using (2.34), we see that the right-hand side of this equation is less than or
equal to zero, so we must have

(2.81) α

∫ ∞

−∞
|ϕ|2(|ψ| − ψ) dx ≤ 0

also. But since the integrand is non-negative, this proves (2.79).
From (2.79) it follows that ψ(x) ≥ 0 at every point x in R for which

ϕ̃(x) ̸= 0. Now (2.77) implies that

(2.82) ϕ̃ = Kσ ⋆
(
τ1|ϕ̃|qϕ̃+ αϕ̃ψ

)
.

Since the convolution of Kσ with a function that is everywhere non-negative
and not identically zero must produce an everywhere positive function, it
follows that ϕ̃(x) > 0 for all x ∈ R. But this in turn implies that ψ(x) ≥ 0
for all x ∈ R.

Now suppose, for the sake of contradiction, that ψ(x0) = 0 for some x0 ∈
R. Then from the preceding paragraph it follows that x0 is a point where ψ
takes its minimum value over R, and therefore we must have ψ′(x0) = 0. But
then standard uniqueness theory for ordinary differential equations, applied
to the second equation in (1.8) viewed as an inhomogeneous equation for ψ,
yields that ψ must be identically zero on its entire interval of existence about
x0, which in this case is R. But this contradicts the fact that ∥ψ∥2 = t > 0.
Therefore ψ must be everywhere positive on R.

Finally, since ψ and |ϕ| are everywhere positive on R, and the right-hand
sides of the equations in (1.8) are infinitely differentiable functions of ϕ and
ψ on the domain {(ϕ, ψ) ∈ C × R : |ϕ| > 0 and ψ > 0}, it follows from the
standard theory of ordinary differential equations that any solution of (1.8)
must be infinitely differentiable on its interval of existence.

This completes the proof of Theorem 1.1.

3. Stability of Solitary-Wave Solutions

In this section we prove the stability result given in Theorem 1.2 by
considering the variational problem W (s, t) defined in (1.11). In particular,
we show that arbitrary minimizing sequences for W (s, t) converge, up to
subsequences and translations, to elements of the minimizing set Fs,t defined
in (1.14). To do this, we relate the problem in (1.11) to that in (1.9),
following the method used in [2].
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Lemma 3.1. Suppose 1 ≤ q < 4 and 1 ≤ p < 4/3, and let s > 0 and
t ∈ R. If {(hn, gn)} is a minimizing sequence for W (s, t), then {(hn, gn)} is
bounded in Y .

Proof. Since ∥hn∥2 = H(hn) is bounded, then

(3.1)
∥gn∥2 =

∣∣∣∣G(hn, gn)− Im

∫ ∞

−∞
hn(hn)x dx

∣∣∣∣ ≤ C (1 + ∥hn∥ · ∥hnx∥)

≤ C (1 + ∥(hn, gn)∥Y ) ,

where C is independent of n. Therefore
(3.2)

∥(hn, gn)∥2Y = E(hn, gn) +

∫ ∞

−∞

(
β1|hn|q+2 + β2g

p+2
n + α|hn|2gn

)
dx+ ∥hn∥2 + ∥gn∥2

≤ C

∫ ∞

−∞

(
|hn|q+2 + |gn|p+2 + |hn|2|gn|

)
dx+ C (1 + ∥(hn, gn)∥Y ) .

From (3.1) it follows that∫ ∞

−∞
|gn|p+2 dx ≤ C∥gnx∥p/2∥gn∥(p+4)/2

≤ C
(
∥(hn, gn)∥p/2Y + ∥(hn, gn)∥(3p+4)/4

Y

)
.

On the other hand, as in (2.2), we have∫ ∞

−∞
|hn|q+2 dx ≤ C∥hnx∥q/2∥hn∥(q+4)/2 ≤ C∥(hn, gn)∥q/2Y ,

and, as in (2.4),∫ ∞

−∞
|hn|2|gn| dx ≤ C∥hnx∥1/2∥gn∥ ≤ C (1 + ∥(hn, gn)∥Y ) .

Combining these estimates with (3.2) gives

∥(hn, gn)∥2Y
≤ C

(
1 + ∥(hn, gn)∥Y + ∥(hn, gn)∥q/2Y + ∥(hn, gn)∥p/2Y + ∥(hn, gn)∥(3p+4)/4

Y

)
,

and since q < 4 and p < 4/3, the exponents on the right-hand side are all
less than 2. Hence ∥(hn, gn)∥Y is bounded. �

We omit the proofs of the next two lemmas, which are identical to the
proofs of Lemmas 4.2 and 4.3 in [2].

Lemma 3.2. Suppose k, θ ∈ R and h ∈ H1
C. If f(x) = ei(kx+θ)h(x), then

E(f, g) = E(h, g) + k2H(h)− 2k Im

∫ ∞

−∞
hhx dx

and

G(f, g) = G(h, g)− kH(h).
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Lemma 3.3. Suppose s > 0 and t ∈ R, and define b = b(a) = (t− a)/s for
a ≥ 0. Then

W (s, t) = inf
a≥0

{I(s, a) + b(a)2s}.

Lemma 3.4. Suppose s > 0 and t ∈ R, and define b(a) = (t − a)/s for
a ≥ 0. If {(hn, gn)} is a minimizing sequence for W (s, t), then there exists
a subsequence (still denoted by {(hn, gn)}) and a number a ≥ 0 such that

lim
n→∞

∥gn∥2 = a,

lim
n→∞

E(eib(a)xhn, gn) = I(s, a),

and

(3.3) W (s, t) = I(s, a) + b(a)2s.

If β1 = 0, we can further assert that a > 0.

Proof. The sequence an defined by

an = ∥gn∥2 = G(hn, gn)− Im

∫ ∞

−∞
hnhnx dx = t− Im

∫ ∞

−∞
hnhnx dx

is bounded, by Lemma 3.1. Hence, by passing to a subsequence, we may
assume that an converges to a limit a ≥ 0. Let b = b(a) and define fn(x) =
eibxhn(x). Then from Lemmas 3.2 and 3.3 we have that
(3.4)

lim
n→∞

E(fn, gn) = lim
n→∞

(
E(hn, gn) + b2H(hn)− 2b Im

∫ ∞

−∞
hnhnx dx

)
=W (s, t) + b2s− 2b(t− a) =W (s, t)− b2s ≤ I(s, a).

We claim that also

(3.5) lim
n→∞

E(fn, gn) ≥ I(s, a).

For if a > 0, then for sufficiently large n we have that ∥fn∥ > 0 and ∥gn∥ >
0, so the sequences βn =

√
s/∥fn∥ and θn =

√
a/∥gn∥ are defined, and

both approach 1 as n → ∞. Since ∥βnfn∥2 = s and ∥θngn∥2 = a, then
E(βnfn, θngn) ≥ I(s, a), and therefore

lim
n→∞

E(fn, gn) = lim
n→∞

E(βnfn, θngn) ≥ I(s, a).

On the other hand, if a = 0, then ∥gn∥ → 0 as n → ∞, so it follows as in
the proof of Lemma 2.2 that (2.6) holds: that is,

(3.6) lim
n→∞

E(fn, gn) = lim
n→∞

∫ ∞

−∞

(
|fnx|2 − β1|fn|q+2

)
dx ≥ I(s, 0).

Hence (3.5) holds in either case.
All the assertions of the Lemma, except the last one, now follow from

(3.4) and (3.5).
To prove the last assertion of the Lemma, assume to the contrary that

β1 = 0 and a = 0. From Lemma 2.6 we know that I(s, a) = 0, so from
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(3.3) it follows that W (s, t) ≥ 0. But on the other hand, we can let g0 be
the function defined in Lemma 2.4, and f0 be the corresponding function
defined for this g0 in Lemma 2.3. Then f0 is real, ∥f0∥2 = s, and ∥g0∥2 = t,
so H(f0) = s and G(f0, g0) = t, and hence W (s, t) ≤ E(f0, g0). Since

E(f0, g0) =

∫ ∞

−∞

(
f20x − αf20 g0

)
dx+ J(g0) < 0,

it follows that W (s, t) < 0, giving the desired contradiction. �

We can now prove Theorem 1.2. Statement (i) of the theorem is an
immediate consequence of Lemma 3.4. To prove statement (ii), we start from
a given subsequence and use Lemma 3.4 to conclude that some subsequence
of (fn, gn) = (eibxhn, gn) is a minimizing sequence for I(s, a).

We claim that upon passing to a further subsequence, there exist real
numbers yn such that (fn(x+ yn), gn(x+ yn)) converges in Y to some (ϕ, ψ)
in Ss,a. If a > 0, this follows immediately from part (ii) of Theorem 1.1.

If, on the other hand, a = 0, then as in the proof of Lemma 3.4 we obtain
(3.6). But from (3.6) we see that

lim
n→∞

E(fn, gn) = lim
n→∞

E(fn, 0),

and since E(fn, gn) converges to I(s, 0), this means that (fn, 0) is a mini-
mizing sequence for I(s, 0). Since a = 0, then Lemma 3.4 implies that β1
must be positive, so the claim follows from Lemma 2.5. Thus the claim has
been proved in all cases.

Now, by passing to yet another subsequence, we may assume that eibyn

converges to eiθ for some θ ∈ [0, 2π). Then (hn(.+ yn), gn(.+ yn)) converges

to (Φ, ψ) in Y , where Φ(x) = e−i(bx+θ)ϕ(x). As in (3.4), we have

(3.7)

I(s, a) = E(ϕ, ψ) = E(Φ, ψ) + b2H(Φ)− 2b Im

∫ ∞

−∞
ΦΦx dx

= E(Φ, ψ) + b2s− 2b
(
G(Φ, ψ)− ∥ψ∥2

)
= E(Φ, ψ) + b2s− 2b(t− s) = E(Φ, ψ)− b2s.

It then follows from (3.3) that E(Φ, ψ) = W (s, t), and hence that (Φ, ψ) ∈
Fs,t.

Part (iii) of the Theorem follows from the Lagrange multiplier principle,
just as did part (iii) of Theorem 1.1.

Next we prove part (iv) of Theorem 1.2. Suppose (Φ, ψ) ∈ Fs,t. Apply-
ing Lemma 3.4 to the minimizing sequence for W (s, t) defined by setting
(hn, gn) = (Φ, ψ) for all n ∈ N, we obtain that (eibxΦ, ψ) is a minimiz-
ing sequence for I(s, a), where a = ∥g∥2 and b = (t − a)/s. Therefore
(eibxΦ, ψ) ∈ Ss,a. Hence by part (iv) of Theorem 1.1, there exist a number

θ ∈ R and a real-valued function ϕ̃ such that eibxΦ(x) = eiθϕ̃(x). So

Φ(x) = ei(−bx+θ)ϕ̃(x),



30 J. ALBERT AND S. BHATTARAI

which is (1.15). In case τ1 = 0, then β1 = 0 and it follows from Lemma 3.4

that a > 0. Since (ϕ̃, ψ) ∈ Ss,a, it follows from part (iv) of Theorem 1.1 that

ψ(x) > 0 on R, and that either ϕ̃(x) > 0 for all x ∈ R or ϕ̃(x) < 0 for all

x ∈ R. In the latter case, we can add π to the value of θ and replace ϕ̃ by
eiθϕ̃ to get that ϕ̃ is positive on R.

Part (v) of Theorem (1.2), concerning the stability of Fs,t, follows from
part (ii) by a standard argument, which we repeat here for completeness.

Suppose that Fs,t is not stable. Then there exist a number ϵ > 0 and
sequences (hn, gn) of initial data in Y and times tn ≥ 0 such that, for all
n ∈ N,

(3.8) inf{∥(hn, gn)− (h, g)∥Y : (h, g) ∈ Fs,t} <
1

n
;

while the solutions (un(x, t), vn(x, t)) of (1.3) with initial data

(un(x, 0), vn(x, 0)) = (hn(x), gn(x))

satisfy

(3.9) inf{∥(un(·, tn), vn(·, tn)− (h, g)∥Y : (h, g) ∈ Fs,t} ≥ ϵ

for all n ∈ N.
From (3.8) and Lemma 2.11 we have that

(3.10)

lim
n→∞

E(hn, gn) =W (s, t),

lim
n→∞

H(hn) = s,

lim
n→∞

G(hn, gn) = t.

Let us denote un(·, tn) by Un and vn(·, tn) by Vn. Since E(u, v), G(u, v), and
H(u) are independent of t, then (3.10) implies

lim
n→∞

E(Un, Vn) =W (s, t),

lim
n→∞

H(Un) = s,

lim
n→∞

G(Un, Vn) = t,

which means that {(Un, Vn)}, like {(hn, gn)}, is a minimizing sequence for
W (s, t).

Now part (ii) of Theorem 1.2 tells us that there exists a subsequence
{(Unk

, Vnk
)}, a sequence of real numbers {yk}, and a function pair (Φ, ψ) ∈

Fs,t such that

(3.11) lim
k→∞

∥(Unk
(·+ yk), Vnk

(·+ yk))− (Φ, ψ)∥Y = 0.

So, for some sufficiently large k,

∥(Unk
(·+ yk), Vnk

(·+ yk))− (Ψ, ψ)∥Y < ϵ,

and hence

(3.12) ∥(Unk
, Vnk

)− (Φ(· − yk), ψ(· − yk))∥Y < ϵ.
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But (Φ(· − yk), ψ(· − yk)) is also in Fs,t, and hence (3.12) gives

inf{∥(Unk
, Vnk

)− (h, g)∥Y : (h, g) ∈ Fs,t} < ϵ.

Since this contradicts (3.9), we conclude that Fs,t must in fact be stable.
It remains only to prove the last assertion (vi) of Theorem 1.2, namely,

that the sets Fs,t form a true two-parameter family. Suppose (Φ1, ψ1) ∈
Fs1,t1 and (Φ2, ψ2) ∈ Fs2,t2 , where (s1, t1) ̸= (s2, t2). We want to show
(Φ1, ψ1) ̸= (Φ2, ψ2). If s1 ̸= s2, the conclusion is obvious, since then ∥Φ1∥2 ̸=
∥Φ2∥2. So we can assume s1 = s2 and t1 ̸= t2. From part (iv), if we let
ηi = (∥ψi∥2 − t1)/si for i = 1, 2; then there exist numbers θ1 and θ2 and

real-valued functions ϕ̃1 and ϕ̃2 such that

(3.13) Φ1(x) = ei(η1x+θ1)ϕ̃1(x) and Φ2(x) = ei(η2x+θ2)ϕ̃2(x)

on R. We may assume that Φ1 = Φ2, or else we are done. Then

ei((η1−η2)x+(θ1−θ2)) = ϕ̃2(x)/ϕ̃1(x)

is real-valued on R, and hence η1 must equal η2. Since s1 = s2, this implies
that ∥ψ1∥2 − t1 = ∥ψ2∥2 − t2. But t1 ̸= t2, so therefore ∥ψ1∥2 ̸= ∥ψ2∥2, and
hence ψ1 ̸= ψ2, as desired.

The proof of Theorem 1.2 is now complete.
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