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1. Introduction

In this report we consider nonlinear dispersive systems of the form

ut + D(f(u)−Mu)x = 0, (1)

where u(x, t) = (u1(x, t), . . . , un(x, t)) is a map from R × R to Rn, D is a

constant diagonal matrix with positive entries, f : Rn → Rn is nonlinear, and

the dispersion operator M acts as a Fourier multiplier operator in the x variable.

More precisely, for each fixed t, Mu is a vector-valued function defined by

M̂u(k, t) = m(k)û(k, t), k ∈ R,

where circumflexes denote Fourier transforms with respect to x,

ĝ(k) =

∫

R

e−ikxg(x) dx.

The function m(k), which takes values in the space of n× n matrices, is called

the multiplier or symbol of M . In what follows we will assume that the entries

of m(k) are real, that m(k) = m(−k) for all k, and that for each k the matrix

m(k) is symmetric. In particular, the first two of these assumptions guarantee

that M takes Rn-valued functions to Rn-valued functions.

Equation (1), being the simplest possible form for an equation combining

nonlinearity and dispersion, naturally arises as a model in many different phys-

ical contexts. One context which accounts for a variety of different dispersion
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operators is that of unidirectional internal gravity waves in two-dimensional in-

viscid stratified fluids between flat horizontal boundaries. Starting from the full

Euler equations of motion governing such fluids, and performing a multi-scale

analysis with wave amplitude and inverse wavelength taken as small param-

eters, one obtains at the first order of approximation a linear system which

can be solved by separation of variables. If x denotes the horizontal coordi-

nate and y the vertical coordinate, the separated solutions or modes are of

the form u(x, t)v(y), where u(x, t) satisfies the ordinary one-dimensional linear

wave equation, and v(y) solves a Sturm-Liouville eigenvalue problem. Letting

v1, v2, . . . denote the eigenfunctions of the Sturm-Liouville problem, one can

write the general solution of the linear system as a superposition of modes
∑

ui(x, t)vi(y). At higher orders of approximation, modes can interact with

each other, and the effects of the interaction on the functions ui(x, t) can in

certain situations be modeled by a system of the form (1). A typical example is

the Liu-Kubota-Ko system [24], considered in Section 2 below, for which n = 2

and each of the two modes in question represent disturbances concentrated at

one of the two interfaces between three finite-depth layers of inviscid fluids with

different densities. From the derivation given in [24] it is easy to see how to

obtain other model equations of type (1) for different configurations, such as a

system with more than two fluids, or with layers of infinite depth, or in which

surface tension plays a significant role (see Section 3 below).

Of particular mathematical and physical interest are internal waves which

propagate without spreading and with undiminished amplitude. Experiments

and observations have suggested that such waves exist and maintain their form

nearly unchanged on long time scales, either as one of a train of periodic waves

or as a single solitary wave (see, e.g., [19, 21, 26, 27]). The corresponding

mathematical phenomena, traveling-wave solutions of the governing equations

of motion or of simplified model equations such as (1), have been intensively

studied. For the full Euler equations for internal waves, there are a number

of results on the existence of traveling-wave solutions (see, e.g., [8, 9, 14]) but

it is not known whether these solutions are stable: in fact it is not known
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whether the Euler equations themselves are globally well-posed. (An interesting

related result on local well-posedness appears in [29].) For equations of type

(1), however, it has been possible to prove the existence of stable solitary-wave

solutions, as well as global well-posedness of the general initial-value problem

(see [1] for a brief overview of the extensive literature on this topic).

Previously obtained results on the stability of solitary-wave solutions of type

(1) have dealt only with the case n = 1, and mostly with the case in which the

symbol m(k) of the dispersion operator takes its minimum value at k = 0. (This

type of dispersion symbol seems to be generally associated with the existence

of a positive solitary-wave solution.) In this paper we describe recent progress

on extending the stability theory of solitary waves to cases in which n > 1,

or in which n = 1 and m(k) may take a minimum at a non-zero value of k.

In Section 2, after defining more precisely the notion of stability we shall use,

we announce a result giving sufficient conditions for the existence of stable

solitary-wave solutions of (1); as a corollary we deduce the existence of stable

(sets of) solitary waves for the Liu-Kubota-Ko system. In Section 3 we prove

a stability result for scalar equations of type (1) for a broad class of symbols

m(k), with no restriction on the location of the minimum value of m(k). The

proof is essentially a generalization of J. Angulo’s proof of stability in [10] for

solitary-wave solutions of the Benjamin equation, in which m(k) = βk2 − α|k|
with α, β > 0.

2. Sufficient conditions for stability of solitary waves

By a solitary-wave solution of (1) we mean a localized traveling-wave solution.

More precisely, we define u(x, t) to be a solitary-wave solution of (1) if it is of the

form u(x, t) = φ(x − Ct), where C ∈ R and φ = (φ1, . . . , φn) with φi ∈ L2(R)

for i = 1, . . . , n. Such a solitary wave is said to be stable if, whenever one solves

(1) with initial data ũ(x, 0) which is a small perturbation of φ, the solution

ũ(x, t) remains close to the unperturbed solution φ(x− Ct) for all time.

Different notions of what it means for the perturbed solution to “remain
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close” to the unperturbed solution φ(x − Ct) lead to different definitions of

stability. First of all, one must specify what it means for two functions of x to

be close to each other: we will measure distance between u(x) and ũ(x) by the

norm ‖u − ũ‖X in the L2-based Sobolev space X = (Hs)n = Hs × · · · × Hs.

(Here standard notation is used: Hs is the set of distributions on R whose

generalized derivatives up to order s are in L2(R). In general, the appropriate

value of s for a stability result will depend on the properties of the functions

m(k) and f(u) appearing in (1).) But it cannot be true in general that the

perturbed solution ũ(x, t) stays close in X norm to φ(x − Ct) for all time: to

see this it suffices to consider ũ(x, t) = φ(x − C̃t), where C̃ is close to but not

equal to C. In fact, this counterexample shows that the best possible stability

result is that ũ(x, t) stays close to the set of translations of the function φ(x), or

in other words to the orbit of the solitary wave φ(x−Ct). This sort of stability

is called orbital stability, and has indeed been proved to hold for a number of

equations of type (1) (see, e.g., [2, 11, 18, 28]).

In this paper we use a different and (possibly) weaker notion of stabil-

ity: namely, that of a set of solitary-wave profiles which does not necessarily

constitute an orbit. Let G ⊆ X be a set of vectors of solitary-wave profiles

φ = (φ1, . . . , φn); i.e., each φ ∈ G corresponds to a solution u(x, t) = φ(x−Ct)

of (1). (Typically, the value of the wavespeed C will be the same for all functions

φ in G, although the theory does not require this to be the case.) We define G

to be a stable set of solitary-wave profiles if for every ε > 0, there exists δ > 0

such that for every ψ (in a suitable space Y of initial data) satisfying

inf
g∈G

‖ψ − g‖X < δ,

the solution u(x, t) of (1) with initial data u(x, 0) = ψ(x) satisfies

inf
g∈G

‖u(x, t)− g‖X < ε for all t ∈ R.

In some cases it is known that for a given wavespeed C, solitary-wave solutions

of (1) are unique up to translation [6, 7]. In such cases, any set G of profiles

of solitary waves with wavespeed C can consist only of translates of a single
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solitary-wave profile φ, and hence the existence of a stable set G of solitary

waves with wavespeed C is equivalent to an orbital stability result for a single

solitary-wave. If, on the other hand, two or more solitary-wave profiles exist

which are not the same up to translation, then it might happen that a set G

containing these two profiles is stable, without either of the individual profiles

being orbitally stable. This distinction is relevant, for example, in the work of

Maddocks and Sachs on stability of n-soliton solutions of the Korteweg-de Vries

equation [25], where it is shown that the set of n-soliton solutions with specified

wave-speeds C1, . . . , Cn is stable, whereas an individual n-soliton solution in

this set is not orbitally stable.

Implicit in the above definition of stability is the assumption that the initial-

value problem for (1) is globally well-posed in some space Y of functions of x.

By “globally well-posed in Y ” we mean the following: for a given ψ in Y there

exists a unique u(x, t) such that u(x, 0) = ψ(x), u(·, t) ∈ Y for all t ∈ R, and

u(x, t) is in some (possibly weak) sense a solution of (1). Moreover, the map

from t to u(·, t) is in the space C(R, Y ) of continuous maps from R to Y , and the

correspondence ψ 7→ u(x, t) defines a continuous map from Y to C(R, Y ). In

what follows we assume that (1) is globally well-posed in some space Y which

injects continuously into X; for global well-posedness results for some of the

equations considered below we refer the reader to [5] and [22].

The approach to stability theory taken here will be the variational approach

introduced by Cazenave and Lions [15, 16], which hinges on the properties of

two functionals E and Q defined for ψ ∈ X by

E(ψ) =

∫ ∞

−∞

1

2
〈ψ, Mψ〉 − F (ψ) dx

and

Q(ψ) =

∫ ∞

−∞

1

2
〈ψ, D−1ψ〉 dx.

Here the brackets 〈 , 〉 denote the usual inner products of vectors in Rn, and

F : Rn → Rn is defined by the relations F ′ = f and F (0) = 0. Using the

well-posedness assumptions for (1) mentioned above, one can show that E and
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Q are conserved along solutions of (1); i.e., if u(x, t) is any solution of (1) then

E(u(x, t)) = E(u(x, 0)) and Q(u(x, t)) = Q(u(x, 0)) for all t ∈ R. (For smooth

solutions u, the invariance of E(u) and Q(u) may be established by multiplying

(1) by Mu and by u, respectively, and performing appropriate integrations

by parts. For general solutions in (Hs)n, the result is derived from that for

smooth solutions by approximating u(x, 0) by smooth initial data and using

the assumption that solutions depend continuously on their initial data.)

Consider now the following constrained minimization problem: for given

q > 0, find g ∈ (Hs)n such that Q(g) = q and E(g) = Iq, where

Iq = inf {E(ψ) : ψ ∈ (Hs)n and Q(ψ) = q}.

The Lagrange multiplier equation δE(g) = λ δQ(g) associated with this vari-

ational problem is in fact the equation which g must satisfy in order to that

u = g(x + λt) be a solution of the system (1). Hence the set Gq of all solutions

of the variational problem consists (if it is non-empty) of solitary-wave profiles

for (1). The following theorem gives sufficient conditions for Gq to be stable.

Theorem 1. Suppose that D is a diagonal matrix with positive entries, and

f(u) = (α1|u1|p+1, . . . , αn|un|p+1) where α1, . . . , αn are positive and p > 1. (If

p is an integer we can also allow f(u) = (α1(u1)
p+1, . . . , αn(un)p+1).) Suppose

that the n×n matrix-valued function m(k) = {mij(k)} is an even function of k,

with mij(k) real for all i and j, and mij(k) = mji(k) for i 6= j. Suppose further

that m(k) has the following three properties:

1. For all k ∈ R, m(k) is positive semi-definite; i.e., 〈v, m(k)v〉 ≥ 0 for

all vectors v ∈ Rn.

2. There exist positive constants A1, A2 and a number s > p/4 such that

A1〈v, v〉|k|2s ≤ 〈m(k)v, v〉 ≤ A2〈v, v〉|k|2s

holds for all vectors v in Rn and all sufficiently large values of |k|.

3. For each i and j between 1 and n, the matrix components mij(k) are

infinitely differentiable functions of k at all k 6= 0. Moreover, for all
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q ∈ {0, 1, 2, . . . } there exist constants B = Bijq and K = Kijq such that

∣∣∣∣
(

d

dk

)q (
mij(k)−mij(0)

k

)∣∣∣∣ ≤ B|k|−q for 0 < |k| ≤ K,

and ∣∣∣∣∣
(

d

dk

)q
(√|mij(k)|

ks

)∣∣∣∣∣ ≤ B|k|−q for |k| ≥ K.

If the solution Iq of the variational problem defined above satisfies Iq < 0

for all q > 0, then the set Gq of minimizers for the variational problem is non-

empty, and is a stable set of solitary-wave solutions of (1) in the sense defined

above.

Theorem 1 is a generalization of Theorem 4.1 of [1], which was stated for

scalar equations only (i.e., for n = 1). Details of the proof will appear else-

where; here we only display the lemma which constitutes the major step in the

argument.

Lemma 2. Under the assumptions of Theorem 1 (including the assumption

that Iq is negative), the minimization problem for Iq enjoys the following com-

pactness property: if {ψk}k=1,2,... is any minimizing sequence (i.e., ψk ∈ (Hs)n

and Q(ψk) → q and E(ψk) → Iq as k → ∞), then some subsequence of {ψk}
converges strongly in (Hs)n to a function g (which must therefore be in Gq).

The Lemma is proved using Lions’ method of concentration compactness

[23]. As was originally observed by Cazenave and Lions [16], the stability of

Gq follows from the compactness property proved in the Lemma by a simple

argument in which E and Q play the role of Lyapunov functionals.

To illustrate the use of Theorem 1, we will apply it to the Liu-Kubota-Ko

(LKK) system modeling the evolution and interaction of long, weakly nonlinear

gravity waves propagating along the two interfaces separating three fluids of

different densities [4, 24]. Again, we give here only an outline of the complete

argument, deferring the details to an upcoming publication.
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When physical variables are suitably scaled, the LKK system can be written

in the form (1) with n = 2, f(u) = (α1(u1)
2, α2(u2)

2),

D =

(
1/γ4 0

0 1/γ2

)
,

and

m(k) =

(
m11(k) m12(k)
m21(k) m22(k)

)
,

where

m11(k) = γ4 [c1 + γ1(k coth kH1 − 1/H1) + γ2(k coth kH2 − 1/H2)] ,

m22(k) = γ2 [c2 + γ3(k coth kH3 − 1/H3) + γ4(k coth kH2 − 1/H2)] ,

and

m12(k) = m21(k) = −γ2γ4

(
k

sinh kH2

)
.

The constants αi, γi, ci, and Hi are determined by the densities and depths of

the three fluid layers.

From the derivation of the LKK system as a model equation, one sees that

the γi (for i = 1 to 4) and the Hi (for i = 1 to 3) may always be taken to be

positive. However, once this convention has been agreed upon, the signs of the

constants α1 and α2 are then determined by the physical configuration of the

system, and may be positive or negative, depending on the vertical structure of

the modes corresponding to u1 and u2. For the purpose of applying Theorem 1

we assume that α1 and α2 are positive. (This assumption is valid, for example,

if the modes are such that for every value of x and t, all the fluid particles in

the corresponding vertical column of fluid have vertical velocities with the same

sign [4].)

Next, observe that g is a solution of the problem of minimizing E subject to

Q = q if and only if g solves the problem of minimizing Ẽ = E +CQ subject to

Q = q, where C is an arbitrary constant. Moreover, the minimizing sequences

for one problem are also the minimizing sequences for the other. Therefore,

both problems simultaneously either enjoy or do not enjoy the compactness

property described in Lemma 2, and so to prove stability of Gq it will suffice to
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show that the assumptions of Theorem 1 apply to the latter variational problem

(for some C). Since

Ẽ(ψ) =

∫ ∞

−∞

1

2
〈ψ, M̃ψ〉 − F (ψ) dx,

where M̃ = CI +M and I is the n×n identity matrix, this amounts to showing

that the function m̃(k) = CI+m(k) satisfies assumptions 1, 2, and 3 of Theorem

1 (for some s > p/4 = 1/4), and that Ĩq < 0, where

Ĩq = inf {Ẽ(ψ) : ψ ∈ (Hs)n and Q(ψ) = q}.

Now a calculation of the eigenvalues β1(k) and β2(k) of m̃(k) shows that

there exists a unique C such that 0 ≤ β1(k) < β2(k) for all k ∈ R, with β1(k) =

0 only when k = 0. For this C, it is easily verified that m̃ satisfies assumptions 1,

2, and 3 of Theorem 1, with s = 1/2. Moreover, taking w(x) = v0ψ(x), where

ψ(x) is smooth with compact support and v0 is an appropriately normalized

eigenvector for the eigenvalue β1(0) = 0, one finds that wθ(x) =
√

θw(θx)

satisfies Ẽ(wθ) < 0 and Q(wθ) = q for all sufficiently small values of θ. This

shows that Ĩq < 0, so completing the proof that Gq is stable.

3. Scalar equations with general dispersion symbols

The Benjamin equation,

ut + uux + αHuxx + βuxxx = 0, (2)

was derived by Benjamin in [12] as a model for long, weakly nonlinear waves

at the interface between two fluids of differing densities, in cases where one of

the fluids has depth much greater than the other, and the surface tension at

the interface is large enough to produce dispersive effects of the same order as

finite-amplitude effects. (See [3] for more information concerning the physical

assumptions underlying the derivation of the Benjamin equation.) In (2), the

parameters α and β are positive constants andH denotes the Hilbert transform,

which is by definition the Fourier multiplier operator with symbol −i sign k.



10 J. ALBERT F. LINARES

Therefore, (2) can be written in the form (1), with n = 1, f(u) = u2/2, and

m(k) = βk2 − α|k|.

The solitary-wave solutions of (2) have been studied in [3, 10, 12, 13, 17].

In [13] Benjamin argues that solitary waves u(x, t) = φ(x−Ct) exist whenever

C is such that the parameter γ = α/(2
√

βC) lies in the range 0 < γ < 1.

He further uses formal computations to suggest that corresponding to a given

γ ∈ (0, 1) there is a profile φ(x) which is not positive, but rather oscillates

between positive and negative values finitely many times, with the number of

oscillations increasing unboundedly as γ approaches 1. These conjectures were

supported by numerical computations in [3], where a rigorous argument is also

given for the existence of orbitally stable solitary waves for all sufficiently small

values of γ. In [17], the existence of solitary waves is established rigorously for all

γ ∈ (0, 1), but the variational characterization used there, which differs slightly

from that of Cazenave and Lions, does not lead to a stability result. Recently,

J. Angulo [10] has succeeded in applying the Cazenave-Lions method to prove

existence and stability of solitary waves φ corresponding to all possible values

0 < q < ∞ of the parameter q =
∫∞
−∞ φ2(x) dx; thus showing in particular that

stable solitary waves exist corresponding to values of γ arbitrarily close to 1.

The techniques used by Angulo in [10] make use of certain identities involving

the Hilbert transforms of special functions, and so do not generalize immediately

to equations with different dispersion operators. (See also [20], where similar

techniques were used for equations in which the dispersion operator M is a

partial differential operator.) We now show (see Theorem 2 below) how to

adapt these techniques to obtain an existence and stability result for solitary-

wave solutions for a broad class of equations of type (1) in the scalar case. The

only restrictions put on the dispersion symbol m(k) are that it be smooth and

grow like a power of |k| as |k| → ∞; in particular we do not require, as in

Theorem 1, that m(k) be everywhere positive. In particular, besides recovering

Angulo’s stability result for the Benjamin equation, Theorem 2 applies as well
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to the finite-depth version of the Benjamin equation,

ut + uux + Tux + uxxx = 0,

in which T is the Fourier multiplier operator with symbol m(k) = k coth kH −
1/H; and to the fifth-order equation

ut + uux − uxxx − αuxxxxx = 0 (α > 0)

studied by Kichenassamy in [20].

For convenience we state the result for equations with the specific nonlin-

earity f(u) = u2/2; it is clear that the proof generalizes easily to equations with

other nonlinearities, but we do not pursue this question here.

Theorem 2. Suppose n = 1 and f(u) = u2/2 in equation (1); and suppose

m(k) is even and satisfies assumptions 2 and 3 of Theorem 1 for some s > 1/4.

Then for every q > 0 the set Gq defined in Section 2 is non-empty, and consists

of a stable set of solitary-wave profiles of (1).

Proof. As was discussed above in Section 2, in proving the stability of Gq

we may replace m by m̃ = m + C where C is an arbitrary constant; if the

assumptions of Theorem 1 can be verified for m̃, then the stability of Gq will

follow. Henceforth we will consider m̃ with C = mink∈R m(k), and tildes will

be dropped for convenience of notation. From our assumptions it then follows

that m satisfies assumptions 1, 2, and 3 of Theorem 1; moreover, there exists k0

such that m(k0) = 0. Since m is even, we may assume without loss of generality

that k0 ≥ 0.

To complete the proof of the Theorem, it remains only to show that Iq < 0;

for this we must find ψ ∈ Hs(R) such that Q(ψ) = q and E(ψ) < 0. We will

adapt a construction used by Angulo in [10].

First we consider the case when k0 6= 0. Let h(x) = 1/(1 + x2), and define

ψ = ah(εx) (cos(k0x) + ε) ,
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where ε = q2, and a is chosen so that Q(ψ) = q =
√

ε. We will show that

E(ψ) < 0 when ε and q are sufficiently small.

To describe the behavior of a as ε → 0, we use the double-angle formula for

the cosine to write

√
ε =

a2

2

∫ ∞

−∞
h(εx)2(cos(k0x) + ε)2 dx

=
a2

4ε

[(
1 + 2ε2

) (∫ ∞

−∞
h(x)2 dx

)
+ 4εĥ2(k0/ε) + ĥ2(2k0/ε)

]
.

Since ĥ2(k) = (π/2)(|k|+ 1)e−|k|, it follows that

a =
ε3/4

b + o(1)
(3)

as ε → 0, where b = 1
2

(∫∞
−∞ h(x)2 dx

)1/2

> 0. (Here and in what follows,

we use the usual “little-o, big-O” notation, so that o(ε), for example, denotes

a quantity which tends to zero faster than ε as ε → 0, while O(ε) denotes a

quantity whose absolute value is dominated by a constant times ε as ε → 0.)

Next we investigate the behavior as ε → 0 of the quadratic part of E(ψ),

given by the integral

1

2

∫ ∞

−∞
ψ(x)Mψ(x) dx =

=
a2

2

∫ ∞

−∞

[
ĥ(k/ε) +

1

2ε
ĥ ((k − k0)/ε) +

1

2ε
ĥ ((k + k0)/ε)

]2

m(k) dk.

(4)

Expanding the squared expression in brackets on the right-hand side of (4), we

obtain six integrals which we will estimate separately.

First, write
∫ ∞

−∞
ĥ(k/ε)2m(k) dk = ε

∫ ∞

−∞
ĥ(k)2m(kε) dk,

and apply the Dominated Convergence Theorem (note that ĥ(k) = πe−|k|, like

ĥ2(k), decays exponentially as |k| → ∞) to obtain
∫ ∞

−∞
ĥ(k/ε)2m(k) dk = ε m(0)

∫ ∞

−∞
ĥ(k)2 dk + o(ε)
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as ε → 0.

Next, write

1

4ε2

∫ ∞

−∞
ĥ ((k − k0)/ε)

2 m(k) dk =
1

4ε

∫ ∞

−∞
ĥ(t)2m(k0 + εt) dt.

Since m(k) is smooth, has a relative minimum at k = k0 with m(k0) = 0, and

grows like |k|2s for |k| large, then by Taylor’s theorem there exists a constant

A such that for all r ∈ R,

m(k0 + r) =

(
m′′(k0)

2

)
r2 + µ(r),

where µ(r) ≤ A|r|3 for |r| ≤ 1 and µ(r) ≤ A|r|max(2s,3) for |r| ≥ 1. It follows

that

1

4ε2

∫ ∞

−∞
ĥ ((k − k0)/ε)

2 m(k) dk = ε

(
m′′(k0)

8

) ∫ ∞

−∞
ĥ(t)2t2 dt + o(ε).

A similar argument shows that we also have

1

4ε2

∫ ∞

−∞
ĥ ((k + k0)/ε)

2 m(k) dk = ε

(
m′′(k0)

8

) ∫ ∞

−∞
ĥ(t)2t2 dt + o(ε).

Finally, consider the integrals arising from the cross terms in (4), such as
∫ ∞

−∞
ĥ ((k + k0)/ε) ĥ ((k − k0)/ε) m(k) dk.

Splitting the interval of integration into the two intervals −∞ < k ≤ 0 and

0 ≤ k < ∞, and noting that ĥ ((k − k0)/ε) = πe−|k−k0|/ε ≤ πe−k0/ε for k ≤ 0 and

ĥ ((k + k0)/ε) ≤ πe−k0/ε for k ≥ 0, one sees that the integral goes to 0 faster than

any power of ε as ε → 0. Similar arguments lead to the same estimate for the in-

tegrals
∫∞
−∞ ĥ(k/ε)ĥ ((k + k0)/ε) m(k) dk and

∫∞
−∞ ĥ(k/ε)ĥ ((k − k0)/ε) m(k) dk.

(For the latter integral, for example, we split the interval of integration into the

subintervals −∞ < k ≤ k0/2 and k0/2 ≤ k < ∞.)

Combining the above estimates, we obtain finally

1

2

∫ ∞

−∞
ψ(x)Mψ(x) dx =

ε5/2

2b2 + o(1)

[∫ ∞

−∞
(ĥ(k))2

(
m(0) +

m′′(k0)k
2

4

)
dk + o(1)

]

as ε → 0.
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It remains to estimate the cubic part of E(ψ). Using the double- and triple-

angle identities for the cosine, we obtain
∫ ∞

−∞
ψ(x)3 dx =

a3

ε

∫ ∞

−∞
h(x)3 (cos(k0x/ε) + ε)3 dx

=
a3

4ε

[
(6ε + 4ε3)

∫ ∞

−∞
h(x)3 dx + (3 + 12ε2)ĥ3(k0/ε) + 6εĥ3 (2k0/ε) + ĥ3 (3k0/ε)

]

= a3

[
3

2

∫ ∞

−∞
h(x)3 dx + o(ε)

]
,

since ĥ3(k) → 0 exponentially fast as |k| → ∞. Hence, using (3), we conclude

that there exists a positive constant A such that
∫ ∞

−∞
ψ(x)3 dx ≥ Aε9/4

for all sufficiently small values of ε.

Since
∫∞
−∞ ψ(x)Mψ(x) dx is dominated by a constant times ε5/2 as ε → 0,

and
∫∞
−∞ ψ(x)3 dx is greater than a positive constant times ε9/4, it follows that

E(ψ) =
1

2

∫ ∞

−∞
ψ(x)Mψ(x) dx− 1

6

∫ ∞

−∞
ψ(x)3 dx

becomes negative when ε is sufficiently small. Thus it has been proved that

there exists q0 > 0 such that Iq < 0 for all q ∈ (0, q0].

It remains to show that in fact Iq < 0 for all q ≥ q0 as well. To see this,

let ψ be the function constructed as above for q = q0, so that E(ψ) < 0 and

Q(ψ) = q0. For given q ≥ q0, we define ψ̃ = βψ, where β =
√

q/q0. Since β ≥ 1

and
∫∞
−∞ ψ(x)3 dx > 0, then

E(ψ̃) =
β2

2

∫ ∞

−∞
ψ(x)Mψ(x) dx− β3

6

∫ ∞

−∞
ψ(x)3 dx

≤ β2

(
1

2

∫ ∞

−∞
ψ(x)Mψ(x) dx− 1

6

∫ ∞

−∞
ψ(x)3 dx

)
= β2E(ψ) < 0.

But Q(ψ̃) = q, and so it has been proved that Iq < 0. This completes the proof

of Theorem 2 in the case k0 6= 0.

The case k0 = 0 is simpler (and in fact has already been treated in [1]).

Again, the issue is to show that for any q > 0 there exists a function ψ ∈ Hs(R)

such that Q(ψ) = q and E(ψ) < 0.
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We let h(x) be an arbitrary smooth, positive function of compact support

such that Q(h) = q, and define ψ(x) =
√

εh(εx), where ε is to be determined

below. Then for all ε, Q(ψ) = q, and the cubic part of E(ψ) is given by

∫ ∞

−∞
ψ(x)3 dx =

√
ε

∫ ∞

−∞
h(x)3 dx.

To estimate the quadratic part of E(ψ), we write

∫ ∞

−∞
ψ(x)Mψ(x) dx =

∫ ∞

−∞
ĥ(k)2m(εk) dk.

Since m(k) satisfies assumption 2 of Theorem 1 (and m(0) = 0, because k0 = 0),

then there exists a constant A > 0 such that |m(k)| ≤ A|k| for 0 ≤ |k| ≤ 1 and

|m(k)| ≤ |k|max(s,1) for |k| ≥ 1. It follows that

∫ ∞

−∞
ψ(x)Mψ(x) dx = O(ε)

as ε → 0. Thus the quadratic part of E is of higher order than the cubic part,

so taking ε sufficiently close to zero gives E(ψ) < 0, as desired. 2
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