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Concentration Compactness and the Stability of
Solitary-Wave Solutions to Nonlocal Equations

John P. Albert

Abstract. In their proof of the stability of standing-wave solutions of nonlin-
ear Schrödinger equations, Cazenave and Lions used the principle of concentra-
tion compactness to characterize the standing waves as solutions of a certain
variational problem. In this article we first review the techniques introduced
by Cazenave and Lions, and then discuss their application to solitary-wave
solutions of nonlocal nonlinear wave equations. As an example of such an ap-
plication, we include a new result on the stability of solitary-wave solutions of
the Kubota-Ko-Dobbs equation for internal waves in a stratified fluid.

1. Introduction

The first mathematical treatment of the problem of stability of solitary waves
was published in 1871 by Joseph Boussinesq [Bou], who at the time was 29 years old
and just beginning a long and distinguished career in mathematical physics. The
solitary waves he was concerned with are water waves with readily recognizable
hump-like profiles, which are often produced by disturbances in a shallow channel
and which can undergo strong interactions and travel long distances without evident
change in form.

Boussinesq showed in [Bou] that if a water wave propagates along a flat-
bottomed channel of undisturbed depth H, and has large wavelength and small
amplitude relative to H, then the elevation h of the water surface considered as a
function of the coordinate x along the channel and the time t will approximately
satisfy the equation

htt − gHhxx − gH(
3

2H
h2 +

H2

3
hxx)xx = 0,

where g is the gravitational acceleration. Using this equation he obtained an explicit
representation of solitary waves in terms of elementary functions (reproduced below
as equation (1.2)). He then proposed to show that solitary waves are stable in the
sense that a slight perturbation of a solitary wave will continue to resemble a solitary
wave for all time, rather than evolving into some other wave form. Such a result
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would go a long way towards explaining why solitary waves are so easily produced
and observed in experiments.

Boussinesq’s proof of stability centered upon the quantity
∫ ∞

−∞

{(
dh

dx

)2

− 3h3

H3

}
dx,

which he called the moment of instability. Like a wave’s volume
∫∞
−∞ h dx or its

energy
∫∞
−∞ h2 dx, its moment of instability does not change from one instant to

the next as the wave evolves. Boussinesq asserted that, within the class of wave
profiles whose energy has a given value, those profiles which correspond to the
greatest moments of instability will differ the most from solitary-wave profiles,
while the minimum value of the moment of instability within this class is attained
at a solitary-wave profile. It follows that solitary waves must be stable, for if a
wave closely resembles a solitary wave at some time, then its moment of instability
must be close to that of a solitary wave; but since the moment of instability does
not change, then the wave must remain close to a solitary wave for all time ([Bou],
p. 62).

In support of his assertions, Boussinesq gave an ingenious proof, which is still
worthy of study today, that if energy is held constant then the moment of insta-
bility is minimized at a solitary wave. By modern standards, however, his overall
argument for the stability of solitary waves contains some gaps: for example he
does not explain why two functions whose moments of stability are nearly the same
must resemble each other in form.

The first rigorous proof of stability of solitary waves appeared a century later, in
Benjamin’s article [B2] on solitary-wave solutions of the Korteweg-deVries equation

(1.1) ut + uux + uxxx = 0.

(Actually the argument in [B2] still contained some flaws which were mended by
Bona [Bo] a few years later.) Equation (1.1), a model equation for water waves de-
rived in [KdV] some twenty years after Boussinesq published his work, has solutions
u(x, t) = φC(x−Ct) which correspond to the solitary waves studied by Boussinesq:
here the wavespeed C can be any positive number, and the wave profile φC is given
as a function of its argument ξ = x− Ct by

(1.2) φC(ξ) =
3C

cosh2( 1
2

√
Cξ)

.

The quantities referred to by Boussinesq as the “energy” and the “moment of
instability” of a water wave correspond to the functionals

(1.3) Q(u) =
1
2

∫ ∞

−∞
u2 dx

and

(1.4) E(u) =
1
2

∫ ∞

−∞

[
(ux)2 − 1

3
u3

]
dx,

respectively. It is an easy exercise to see that if u = u(x, t) satisfies (1.1) then both
of these functionals are independent of time.
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In the setting of equation (1.1), Boussinesq’s assertion would be that φC is a
minimizer of the functional E over the set of all admissible functions ψ satisfying
Q(ψ) = Q(φC). Benjamin did not prove this in its entirety, but did show that φC

is a local minimizer. More precisely, he showed that if ψ ∈ H1 is sufficiently close
to φC in H1 norm, and Q(ψ) = Q(φC), then

E(ψ)− E(φC) ≥ A inf
y∈R

‖ψ − φC(·+ y)‖H1

where A denotes a positive constant which is independent of ψ. From this estimate,
together with an elaboration of Boussinesq’s original argument, one can deduce the
following stability result:

Theorem 1.1 [B2,Bo]. For every ε > 0, there exists δ > 0 such that if

‖u0 − φC‖H1 < δ,

then the solution u(x, t) of (1.1) with u(x, 0) = u0 satisfies

inf
y∈R

‖u(x, t)− φC(x + y)‖H1(dx) < ε

for all t ∈ R.

(In stating this theorem we have tacitly assumed that the initial data u0 belong
to a class for which unique solutions of the initial-value problem for (1.1) exist for all
time. We will continue to make this assumption without comment in what follows;
for more information on well-posedness of the initial value problem for (1.1) and
related equations the reader may consult [ABFS].)

Note that in Theorem 1.1 it cannot be concluded that

‖u(x, t)− φC(x− Ct)‖H1(dx) < ε

for all time: to see this, it suffices to consider the solution u(x, t) = φC1(x− C1t),
where C1 is close to, but not equal to C. However, Bona and Soyeur [BS] have
recently shown that if ‖u0 − φC‖1 is sufficiently small then

‖u(x, t)− φC(x− γ(t))‖H1(dx) < ε

and
|γ′(t)− C| < θε

for all t, where the constant θ is independent of ε and u0.
In [B2] Benjamin pointed out that Boussinesq’s idea could also be applied to

solitary wave solutions of other equations of Hamiltonian form. Others soon took
up this suggestion and extended the theory to more general settings: see, e.g., the
far-reaching treatments in [GSS1,GSS2,MS] (some of whose results were antici-
pated in the physics literature [KRZ]). Recently, Pego and Weinstein introduced
a particularly interesting variation of the theory [PW], showing that solitary-wave
solutions of the KdV equation (1.1) are asymptotically stable: i.e., a small initial
perturbation of a solitary wave will give rise to a solution u(x, t) which not only
resembles a solitary wave for all time, but in fact tends to the solitary wave as a
limiting form as t → ∞. (Boussinesq, by the way, had already noted that this
phenomenon appears in experiments, but had attributed it to frictional effects—
which are not modelled by the inviscid equation (1.1).) In all these papers, the
solitary wave is proved stable by showing that it is a local (as opposed to global)
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constrained minimizer of a Hamiltonian functional E; this is done by analyzing the
functional derivatives of E and the constraint functional Q at the solitary wave.

An alternate approach to proving stability of solitary waves, which does not
rely on local analysis, was developed by Cazenave and P. Lions [C,CL] using Lions’
method of concentration compactness. In this approach, rather than starting with
a given solitary wave and attempting to prove that it realizes a local minimum of a
constrained variational problem, one starts instead with the constrained variational
problem and looks for global minimizers. When the method works, it shows not only
that global minimizers exist, but also that every minimizing sequence is relatively
compact up to translations (cf. Theorem 2.9 below). An easy corollary is that the
set of global minimizers is a stable set for the associated initial value problem, in
the sense that a solution which starts near the set will remain near it for all time.

Although the concentration-compactness method for proving stability of soli-
tary waves has the advantage of requiring less detailed analysis than the local
methods, it also produces a weaker result in that it only demonstrates stability
of a set of minimizing solutions without providing information on the structure of
that set, or distinguishing among its different members. Thus, when de Bouard
and Saut [dBS] used the concentration-compactness method to prove stability of a
set of traveling-wave solutions of the Kadomtsev-Petviashvili equation, they noted
that their result did not establish the stability of the explicit “lump” solitary-wave
solutions of this equation, since it is not known whether the lump solutions are in
the stable set. Further, even if the lump solutions were known to be in this set,
the possibility remains open that there are other elements in the stable set which
do not resemble lump solutions, and that a perturbed lump solution may wander
towards these other minimizers.

In this paper we use concentration compactness to prove stability of solitary-
wave solutions of equations of the form

(1.5) ut + (f(u))x − (Lu)x = 0,

where f(u) is a real-valued function of u, and Lu is a Fourier multiplier operator
defined by

L̂u(k) = m(k)û(k)
(here the hats denote Fourier transforms). If m(k), the symbol of L, is a polynomial
function of k, then L is a differential operator; and in particular is a local operator
in the sense that if u = 0 outside an open subset S of R then also Lu = 0 outside S.
On the other hand, in many situations in fluid dynamics and mathematical physics,
equations of the above type arise in which m(k) is not a polynomial and hence the
operator L is nonlocal (see Sections 3 and 4 below for examples).

The functionals
Q(u) =

1
2

∫ ∞

−∞
u2 dx

and

E(u) =
∫ ∞

−∞

[
1
2
uLu− F (u)

]
dx,

where F ′(u) = f(u) for u ∈ R and F (0) = 0, are integrals of motion for (1.5);
i.e., if u solves (1.5) then Q(u) and E(u) are independent of t. The concentration-
compactness method for proving stability of solitary-wave solutions of (1.5) aims
to show that they are minimizers of E subject to the constraint that Q be held
constant. In the original version of the method, as it appears for example in the
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article [CL] on nonlinear Schrödinger equations, important use is made of the fact
that the operator L appearing in E is a local operator. Nevertheless, we show below
(using an idea which has already appeared in [ABS]) that if L is not too far from
being local then the results of [CL] still obtain. Of course, as explained above, the
stability result in view is that the set of solitary waves which are solutions of the
minimization problem is stable as a set; and to the extent that the structure of this
set remains unknown, such a stability result leaves something to be desired.

The remainder of this paper is organized as follows. In Section 2, we review
the concentration-compactness method by showing in detail how it is used to prove
stability of solitary-wave solutions of the Korteweg-de Vries equation. The proof is
broken into a series of short lemmas to make it easy to identify the parts which need
to be modified in the nonlocal case. In Section 3, we illustrate how the method may
be applied to nonlocal equations by using it to prove the stability of solitary-wave
solutions of the Kubota-Ko-Dobbs equation for internal waves in stratified fluids.
Generalizations of the result obtained in Section 3 are discussed in the concluding
Section 4.

Notation. The set of natural numbers {0, 1, 2, . . . } and the set of all integers
are written N and Z, respectively. The set of all real numbers is denoted by R, and
all integrals will be taken over R unless otherwise specified. The Fourier transform
f̂ of a tempered distribution f(x) on R is defined as

f̂(k) =
∫

e−ikxf(x) dx.

For any tempered distribution f on R and any s ∈ R, we define

‖f‖s =
(∫

(1 + |k|2)s/2|f̂(k)|2 dk

)1/2

,

and Hs denotes the Sobolev space of all f for which ‖f‖s is finite. The notation
l2(Hs) will be used for the Hilbert space of all sequences {gj}j∈Z such that gj ∈ Hs

for each j and
∑

j∈Z ‖gj‖2s < ∞. For any measurable function f on R and any
p ∈ [1,∞), we define

|f |p =
(∫

|f(x)|p dx

)1/p

,

and Lp denotes the space of all f for which |f |p is finite. The space L∞ is defined
as the space of all measurable functions f on R such that

|f |∞ = ess sup
x∈R

|f(x)|

is finite. Finally, if E is a subset of R then C∞0 (E) denotes the space of infinitely
differentiable functions with compact support in E.

2. The concentration-compactness method

In this section we illustrate the concentration-compactness method by using
it to prove Benjamin and Bona’s result (Theorem 1.1 above) on the stability of
solitary-wave solutions of the KdV equation (1.1). We have broken the proof into
small lemmas so that later, in Section 3, it will be easy to identify the parts which
need changing. The ideas in this section are not new, but are rather a selection of
arguments adapted from [CL] and [L] (see also [C]).
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Let E and Q be as defined in (1.3) and (1.4); it is easy to see using the Sobolev
embedding theorem that E and Q define continuous maps from H1 to R. Fix a
positive number C and let φC be as in (1.2). Let q = Q(φC) and define the real
number Iq by

Iq = inf
{

E(ψ) : ψ ∈ H1 and Q(ψ) = q
}

.

The set of minimizers for Iq is

Gq =
{

ψ ∈ H1 : E(ψ) = Iq and Q(ψ) = q
}

,

and a minimizing sequence for Iq is any sequence {fn} of functions in H1 satisfying

Q(fn) = q for all n

and
lim

n→∞
E(fn) = Iq.

To each minimizing sequence {fn}, we associate a sequence of nondecreasing
functions Mn : [0,∞) → [0, q] defined by

Mn(r) = sup
y∈R

∫ y+r

y−r

|fn|2 dx.

An elementary argument shows that any uniformly bounded sequence of non-
decreasing functions on [0,∞) must have a subsequence which converges point-
wise (in fact, uniformly on compact sets) to a nondecreasing limit function on
[0,∞). Hence {Mn} has such a subsequence, which we denote again by {Mn}.
Let M : [0,∞) → [0, q] be the nondecreasing function to which Mn converges, and
define

α = lim
r→∞

M(r);

then 0 ≤ α ≤ q.
The method of concentration compactness [L1,L2], as applied to this situation,

consists of two observations. The first is that if α = q, then the minimizing sequence
{fn} has a subsequence which, when its terms are suitably translated, converges
strongly in H1 to an element of Gq. The second is that certain simple properties of
the variational problem imply that α must equal q for every minimizing sequence
{fn}. It follows that not only do minimizers exist in H1, but every minimizing
sequence converges in H1 norm to the set Gq.

We will now give the details of the method. We begin with a special case of a
general result found in [L1] and [Li].

Lemma 2.1. Suppose B > 0 and δ > 0 are given. Then there exists η =
η(B, δ) > 0 such that if f ∈ H1 with ‖f‖1 ≤ B and |f |3 ≥ δ, then

sup
y∈R

∫ y+1/2

y−1/2

|f(x)|3 dx ≥ η.

Proof. We have

∑

j∈Z

∫ j+1/2

j−1/2

[f2 + (f ′)2] dx = ‖f‖21 ≤ B2 =
B2

|f |33
|f |33 =

∑

j∈Z

B2

|f |33

∫ j+1/2

j−1/2

|f |3 dx.
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Hence there exists some j0 ∈ Z for which
∫ j0+1/2

j0−1/2

[f2 + (f ′)2] dx ≤ B2

|f |33

∫ j0+1/2

j0−1/2

|f |3 dx.

Now by the Sobolev embedding theorem there exists a constant A (independent of
f) such that

(∫ j0+1/2

j0−1/2

|f |3 dx

)1/3

≤ A

(∫ j0+1/2

j0−1/2

[f2 + (f ′)2] dx

)1/2

.

Hence (∫ j0+1/2

j0−1/2

|f |3 dx

)1/3

≤
(

AB

|f |3/2
3

)(∫ j0+1/2

j0−1/2

|f |3 dx

)1/2

,

so ∫ j0+1/2

j0−1/2

|f |3 dx ≥ δ9

A6B6
.

The proof is now concluded by taking η to be the constant on the right-hand side
of the last inequality. ¤

Next we establish some properties of the variational problem and its minimizing
sequences which are independent of the value of α.

Lemma 2.2. For all q1 > 0, one has

−∞ < Iq1 < 0.

Proof. Choose any function ψ ∈ H1 such that Q(ψ) = q1 and
∫

ψ3 dx 6= 0.
For each θ > 0, define the function ψθ by ψθ(x) =

√
θψ(θx). Then for all θ one has

Q(ψθ) = Q(ψ) = q1 and

E(ψθ) =
θ2

2

∫
(ψ′)2 dx− θ1/2

6

∫
ψ3 dx.

Hence by taking θ = θ0 sufficiently small we get E(ψθ0) < 0, and since Iq1 ≤ E(ψθ0)
it follows that Iq1 < 0.

Now let ψ denote an arbitrary function in H1 satisfying Q(ψ) = q1. To prove
that Iq1 > −∞, it suffices to bound E(ψ) from below by a number which is inde-
pendent of ψ. Note first that from standard Sobolev embedding and interpolation
theorems it follows that∣∣∣∣

∫
ψ3 dx

∣∣∣∣ ≤ |ψ|33 ≤ A‖ψ‖31
6
≤ A‖ψ‖5/2

0 ‖ψ‖1/2
1 ,

where A denotes various constants which are independent of ψ. Then Young’s
inequality gives ∣∣∣∣

∫
ψ3 dx

∣∣∣∣ ≤ ε‖ψ‖21 + Aε‖ψ‖10/3
0

where ε > 0 is arbitrary and Aε depends on ε but not on ψ. Therefore, since
‖ψ‖0 = |ψ|2 = (Q(ψ))1/2, one has

∣∣∣∣
∫

ψ3 dx

∣∣∣∣ ≤ ε‖ψ‖21 + Aε,q1
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where again Aε,q1 is independent of ψ. Hence

E(ψ) = E(ψ) + Q(ψ)−Q(ψ)

=
1
2

∫ [
(ψ′)2 + ψ2

]
dx− 1

6

∫
ψ3 dx−Q(ψ)

≥ 1
2
‖ψ‖21 −

ε

6
‖ψ‖21 −

1
6
Aε,q1 − q1.

Choosing ε = ε0 ≤ 3 then gives the lower bound

E(ψ) ≥ −1
6
Aε0,q1 − q1,

and so the proof is complete. ¤

Lemma 2.3. If {fn} is a minimizing sequence for Iq, then there exist constants
B > 0 and δ > 0 such that

1. ‖fn‖1 ≤ B for all n and
2. |fn|3 ≥ δ for all sufficiently large n.

Proof. To prove statement 1, write

1
2
‖fn‖21 = E(fn) + Q(fn) +

1
6

∫
f3

n dx

≤ sup
n

E(fn) + q +
A

6
‖fn‖31/6

≤ A
(
1 + ‖fn‖5/2

0 ‖fn‖1/2
1

)

≤ A
(
1 + ‖fn‖1/2

1

)
,

where again Sobolev embedding and interpolation theorems have been used, and
A denotes various constants which are independent of n. Since the square of ‖fn‖1
has now been bounded by a smaller power, the existence of the desired bound B
follows.

To prove statement 2, we argue by contradiction: if no such constant δ exists,
then

lim inf
n→∞

∫
(fn)3 dx ≤ 0,

so

Iq = lim
n→∞

(
1
2

∫
(f ′n)2 dx− 1

6

∫
f3

n dx

)
≥ lim inf

n→∞

(
−1

6

∫
f3

n dx

)
≥ 0,

contradicting Lemma 2.2. ¤

Lemma 2.4. For all q1, q2 > 0, one has

I(q1+q2) < Iq1 + Iq2 .
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Proof. First we claim that for all θ > 0 and q > 0,

Iθq = θ5/3Iq.

To see this, associate to each function ψ ∈ H1 the function ψθ defined by

ψθ(x) = θ2/3ψ(θ1/3x).

Then
Q(ψθ) = θQ(ψ),

while
E(ψθ) = θ5/3E(ψ).

Hence

Iθq = inf {E(ψθ) : Q(ψθ) = θq}
= inf

{
θ5/3E(ψ) : Q(ψ) = q

}

= θ5/3Iq,

as claimed.
Now from the claim and Lemma 2.2 it follows that for all q1, q2 > 0

I(q1+q2) = (q1 + q2)5/3I1 <
(
q
5/3
1 + q

5/3
2

)
I1 = Iq1 + Iq2 .

¤

Next we consider separately the three possibilities α = q, 0 < α < q, and α = 0.
The first of these is called the case of compactness by Lions because of the following
lemma.

Lemma 2.5 [L1]. Suppose α = q. Then there exists a sequence of real numbers
{y1, y2, y3, . . . } such that

1. for every z < q there exists r = r(z) such that
∫ yn+r

yn−r

|fn|2 dx > z

for all sufficiently large n.
2. the sequence {f̃n} defined by

f̃n(x) = fn(x + yn) for x ∈ R

has a subsequence which converges in H1 norm to a function g ∈ Gq. In
particular, Gq is nonempty.

Proof. Since α = q, then there exists r0 such that for all sufficiently large
values of n we have

Qn(r0) = sup
y∈R

∫ y+r0

y−r0

|fn|2 dx > q/2.

Hence for each sufficiently large n we can find yn such that
∫ yn+r0

yn−r0

|fn|2 dx > q/2.
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Now let z < q be given; clearly we may assume z > q/2. Again, since α = q then
we can find r0(z) and N(z) such that if n ≥ N(z) then

∫ yn(z)+r0(z)

yn(z)−r0(z)

|fn|2 dx > z

for some yn(z) ∈ R. Since
∫
R
|fn|2 dx = q, it follows that for large n the intervals

[yn−r0, yn +r0] and [yn(z)−r0(z), yn(z)+r0(z)] must overlap. Therefore, defining
r = r(z) = 2r0(z)+ r0, we have that [yn− r, yn + r] contains [yn(z)− r0(z), yn(z)+
r0(z)], and statement 1 then follows.

Now statement 1 implies that for every k ∈ N, there exists rk ∈ R such that
for all sufficiently large n,

∫ rk

−rk

|f̃n|2 dx > 1− 1
k

.

By Lemma 2.3.1, the sequence {f̃n} is uniformly bounded in H1, and hence from
the compactness of the embedding of H1(Ω) into L2(Ω) on bounded intervals Ω
it follows that some subsequence of {f̃n} converges in L2[−rk, rk] norm to a limit
function g ∈ L2[−rk, rk] satisfying

∫ rk

−rk

|g|2 dx > 1− 1
k

.

A Cantor diagonalization argument, together with the fact that
∫
R
|f̃n|2 dx = q

for all n, then shows that some subsequence of {f̃n} converges in L2(R) norm to a
function g ∈ L2(R) satisfying

∫
R
|g|2 dx = q. Again using Lemma 2.3.1, we have

|f̃n − g|3 ≤ A‖f̃n − g‖1/6 ≤ A‖f̃n − g‖1/6
1 ‖f̃n − g‖5/6

0 ≤ A|f̃n − g|5/6
2 ,

where A is independent of n; so f̃n → g in L3 norm also. Furthermore, by the weak
compactness of the unit sphere and the weak lower semicontinuity of the norm in
Hilbert space, we know that f̃n converges weakly to g in H1, and that

‖g‖1 ≤ lim inf
n→∞

‖f̃n‖1.
It follows that

E(g) ≤ lim
n→∞

E(f̃n) = Iq,

whence E(g) = Iq and g ∈ Gq. Finally, E(g) = lim
n→∞

E(f̃n), |g|3 = lim
n→∞

|f̃n|3, and

|g|2 = lim
n→∞

|f̃n|2 together imply that ‖g‖1 = lim
n→∞

‖f̃n‖1, and from an elementary

exercise in Hilbert space theory it then follows that f̃n converges to g in H1 norm.
¤

The next lemma is used to describe the behavior of minimizing sequences in
the case 0 < α < q.

Lemma 2.6. For every ε > 0, there exist a number N ∈ N and sequences
{gN , gN+1, . . . } and {hN , hN+1, . . . } of H1 functions such that for every n ≥ N ,

1. |Q(gn)− α| < ε
2. |Q(hn)− (q − α)| < ε
3. E(fn) ≥ E(gn) + E(hn)− ε
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Proof. Choose φ ∈ C∞0 [−2, 2] such that φ ≡ 1 on [−1, 1], and let ψ ∈ C∞(R)
be such that φ2 + ψ2 ≡ 1 on R. For each r ∈ R, define φr(x) = φ(x/r) and
ψr(x) = ψ(x/r).

For all sufficiently large values of r we have

α− ε < M(r) ≤ M(2r) ≤ α.

Assume for the moment that such a value of r has been chosen. Then we can choose
N so large that

α− ε < Mn(r) ≤ Mn(2r) < α + ε

for all n ≥ N . Hence for each n ≥ N we can find yn such that

(2.1)
∫ yn+r

yn−r

|fn|2 dx > α− ε

and

(2.2)
∫ yn+2r

yn−2r

|fn|2 dx < α + ε.

Define gn(x) = φr(x− yn)fn(x) and hn(x) = ψr(x− yn)fn(x). Then clearly state-
ments 1 and 2 are satisfied by gn and hn.

To prove statement 3, note that

E(gn) + E(hn) =

=
1
2

[∫
φ2

r(f
′
n)2 dx + 2

∫
φrφ

′
rfnf ′n dx +

∫
(φ′r)

2f2
n dx

]

+
1
2

[∫
ψ2

r(f ′n)2 dx + 2
∫

ψrψ
′
rfnf ′n dx +

∫
(ψ′r)

2f2
n dx

]

−1
6

∫
φ2

rf
3
n dx− 1

6

∫
ψ2

rf3
n dx

+
1
6

∫
(φ2

r − φ3
r)f

3
n dx +

1
6

∫
(ψ2

r − ψ3
r)f3

n dx,

where for brevity we have written simply φr and ψr for the functions φr(x − yn)
and ψr(x − yn). Now φ2

r + ψ2
r ≡ 1, |(φr)′|∞ = |φ′|∞/r, and |(ψr)′|∞ = |ψ′|∞/r.

Therefore, making use of Hölder’s Inequality and Lemma 2.3.1, one can rewrite the
preceding equation in the form

E(gn) + E(hn) = E(fn) + O(1/r) +
1
6

∫ [
(φ2

r − φ3
r) + (ψ2

r − ψ3
r)

]
f3

n dx,

where O(1/r) signifies a term bounded in absolute value by A1/r with A1 indepen-
dent of r and n. But using (2.1) and (2.2) we obtain

∣∣∣∣
∫ [

(φ2
r − φ3

r) + (ψ2
r − ψ3

r)
]
f3

n dx

∣∣∣∣ ≤
(∫

r≤|x−yn|≤2r

2|fn|2 dx

)
· |f |∞ ≤ A2ε,

where again A2 is independent of r and n.
It is now time to choose r, and we make the choice so large that the O(1/r) term

in the preceding paragraph is less than ε in absolute value. For the corresponding
choices of sequences {gn} and {hn}, statements 1 and 2 hold together with

(2.3) E(fn) ≥ E(gn) + E(hn)− (A2 + 1)ε
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for all n ≥ N(r). Finally, we may return to the beginning of the proof and there
replace ε by min(ε, ε/(A2 + 1)), thus transforming (2.3) into statement 3 (without
affecting statements 1 and 2). ¤

Corollary 2.7. If 0 < α < q then

Iq ≥ Iα + Iq−α.

Proof. First observe that if g is a function such that |Q(g) − α| < ε, then
Q(βg) = α, where β =

√
α/Q(g) satisfies |β − 1| < A1ε with A1 independent of g

and ε. Hence
Iα ≤ E(βg) ≤ E(g) + A2ε,

where A2 depends only on A1 and ‖g‖1. A similar result holds for functions h such
that |Q(h)− (q − α)| < ε.

From these observations and Lemma 2.6 it follows easily that there exists a
subsequence {fnk

} of {fn} and corresponding functions gnk
and hnk

such that for
all k,

E(gnk
) ≥ Iα − 1

k
,

E(hnk
) ≥ Iq−α − 1

k
, and

E(fnk
) ≥ E(gnk

) + E(hnk
)− 1

k
.

Hence

E(fnk
) ≥ Iα + Iq−α − 3

k
.

The desired result is now obtained by taking the limit of both sides as k →∞. ¤

Remark. Because of Lemma 2.6 and its corollary, Lions calls 0 < α < q
the case of dichotomy: each of the minimizing functions fn can be split into two
summands which carry fixed proportions of the constraint functional Q, and which
are sufficiently separated spatially that the sum of the values of E at each summand
does not exceed E(fn). In fact, as explained in the remark following Theorem 2.9
below, for a general class of variational problems of the type considered here, the
inequality Iq ≤ Iβ + Iq−β holds for all β ∈ (0, q), so that in the case of dichotomy
one would have from Corollary 2.7 that

Iq = Iα + Iq−α.

Thus the two sequences of summands will themselves be minimizing sequences for
Iα and Iq−α respectively.

Our final lemma shows that the possibility α = 0 (called the case of vanishing
by Lions) does not occur here.

Lemma 2.8. For every minimizing sequence, α > 0.
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Proof. From Lemmas 2.1 and 2.3 we conclude that there exists η > 0 and a
sequence {yn} of real numbers such that

∫ yn+1/2

yn−1/2

|fn|3 dx ≥ η

for all n. Hence

η ≤ |fn|∞
(∫ yn+1/2

yn−1/2

|fn|2 dx

)
≤ AB

(∫ yn+1/2

yn−1/2

|fn|2 dx

)
,

where A is the Sobolev constant in the embedding of L∞ into H1. It follows that
α = lim

r→∞
M(r) ≥ M(1/2) = lim

n→∞
Mn(1/2) ≥ η

AB
> 0. ¤

Theorem 2.9. The set Gq is not empty. Moreover, if {fn} is any minimizing
sequence for Iq, then

1. there exists a sequence {y1, y2, . . . } and an element g ∈ Gq such that
fn(·+ yn) has a subsequence converging strongly in H1 to g.

2.
lim

n→∞
inf

g∈Gq

y∈R

‖fn(·+ y)− g‖1 = 0.

3.
lim

n→∞
inf

g∈Gq

‖fn − g‖1 = 0.

Proof. From Lemmas 2.4, 2.7 and 2.8 it follows that α = q. Hence by Lemma
2.5 the set Gq is nonempty and statement 1 of the present lemma holds.

Now suppose that statement 2 does not hold; then there exists a subsequence
{fnk

} of {fn} and a number ε > 0 such that

inf
g∈Gq

y∈R

‖fnk
(·+ y)− g‖1 ≥ ε

for all k ∈ N. But since {fnk
} is itself a minimizing sequence for Iq, from statement

1 it follows that there exist a sequence {yk} and g0 ∈ Gq such that

lim inf
k→∞

‖fnk
(·+ yk)− g0‖1 = 0.

This contradiction proves statement 2.
Finally, since the functionals E and Q are invariant under translations, then

Gq clearly contains any translate of g if it contains g, and hence statement 3 follows
immediately from statement 2. ¤

Remark. For arbitrary functionals E and Q defined on a function space X,
and Iq and Gq defined as above, the preceding arguments show that under general
conditions the subadditivity property Iq < Iβ + Iq−β (for all β ∈ (0, q)) is sufficient
to imply the relative compactness (modulo translations) of all minimizing sequences
for Iq. Lions [L1] has also given a heuristic argument, which we now paraphrase
here, for the necessity of this property. Let β ∈ (0, q) be given, and let {gn} and
{hn} be minimizing sequences for Iβ , Iq−β respectively. Define h̃n = hn(· + yn)
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where yn is chosen so that the distance between the supports of gn and h̃n tends to
infinity with n. If E and Q are local operators, or at least not too nonlocal, then

E(gn + h̃n) ∼ E(gn) + E(h̃n) → Iβ + Iq−β

and
Q(gn + h̃n) ∼ Q(gn) + Q(h̃n) → q,

as n →∞, so that
Iβ + Iq−β = lim

n→∞
E(gn + h̃n) ≥ Iq.

Now if Iq = Iβ + Iq−β then gn + h̃n is a minimizing sequence for Iq; but gn + h̃n

cannot have a strongly convergent subsequence (even after translations) in any of
the usual function spaces. (For example, it is an easy exercise to show that if∫

g2
n = β > 0 and

∫
h̃2

n = q−β > 0 for all n, and the distance between the supports
of gn and h̃n tends to infinity with n, then there does not exist any sequence {yn}
of real numbers such that {gn(·+ yn) + h̃n(·+ yn)} has a convergent subsequence
in L2.) Hence if all minimizing sequences for Iq are relatively compact (modulo
translations), then we must have Iq < Iβ + Iq−β for all β ∈ (0, q).

An immediate consequence of Theorem 2.9 is that Gq forms a stable set for the
initial-value problem for (1.1).

Corollary 2.10. For every ε > 0, there exists δ > 0 such that if

inf
g∈Gq

‖u0 − g‖1 < δ,

then the solution u(x, t) of (1.1) with u(x, 0) = u0 satisfies

inf
g∈Gq

‖u(·, t)− g‖1 < ε

for all t ∈ R.

Proof. Suppose the theorem to be false; then there exist a number ε > 0, a
sequence {ψn} of functions in H1, and a sequence of times {tn} such that

inf
g∈Gq

‖ψn − g‖1 <
1
n

and
inf

g∈Gq

‖un(·, tn)− g‖1 ≥ ε

for all n, where un(x, t) solves (1.1) with un(x, 0) = ψn. Then since ψn → Gq in
H1, and E(g) = Iq and Q(g) = q for g ∈ Gq, we have E(ψn) → Iq and Q(ψn) → q.
Choose {αn} such that Q(αnψn) = q for all n; thus αn → 1. Hence the sequence
fn = αnun(·, tn) satisfies Q(fn) = q and

lim
n→∞

E(fn) = lim
n→∞

E(un(·, tn)) = lim
n→∞

E(ψn) = Iq,

and is therefore a minimizing sequence for Iq. From Theorem 2.9.3 it follows that
for all n sufficiently large there exists gn ∈ Gq such that ‖fn − gn‖1 < ε

2 . But then

ε ≤ ‖un(·, tn)− gn‖1 ≤ ‖un(·, tn)− fn‖1 + ‖fn − gn‖1 ≤ |1− αn| · ‖un(·, tn)‖1 +
ε

2
,

and taking n →∞ gives ε ≤ ε
2 , a contradiction. ¤
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Note that the stability result in Corollary 2.10 is weaker than that of Theorem
1.1; this is an instance of the general fact, discussed above in Section 1, that the
concentration-compactness method by itself only proves stability with respect to an
unspecified set of minimizers. If for example the set Gq contained two functions g1

or g2 which were not translates of each other, then not all minimizing sequences for
Iq would converge modulo translations; since a minimizing sequence could contain
two subsequences tending to g1 and g2 respectively. Of course if the elements of
Gq were isolated points (modulo translations) in function space, then the argument
used to prove Corollary 2.10 would show that each such point constitutes a stable
set in itself; but nonisolated minimizers contained in Gq could fail to be individually
stable.

In the present case, however, it is easy to see that Gq contains but a single
function (modulo translations), and that this function is indeed a solitary-wave
solution of (1.1).

Proposition 2.11. If Gq is not empty then

Gq = {φC(·+ x0) : x0 ∈ R} .

Proof. If g(x) ∈ Gq then by the Lagrange multiplier principle (see, e.g.,
Theorem 7.7.2 of [Lu]), there exists λ ∈ R such that

(2.4) δE(g) + λ δQ(g) = 0,

where δE(g) and δQ(g) are the Fréchet derivatives of E and Q at g. Now δE and
δQ are given (as distributions in H−1) by

δE(g) = −g′′ − 1
2
g2,

δQ(g) = g;

and therefore (2.4) is an ordinary differential equation in g. A bootstrap argument
shows that any L2 distribution solution of (2.4) must be smooth, and from an
elementary phase plane analysis one then concludes that the only solutions of (2.4)
in L2 are the functions φλ(x + x0), where x0 is arbitrary and φλ is defined by (1.2)
with C replaced by λ. But it is easily seen that Q(φλ) = q = Q(φC) if and only if
λ = C. Hence g(x) = φC(x + x0). This proves that Gq ⊂ {φC(·+ x0) : x0 ∈ R},
and the reverse inclusion follows (if Gq is not empty) from the translation invariance
of E and Q. ¤

Combining Theorem 2.9 and its corollary with Proposition 2.11, we see that
Theorem 1.1 has now been completely proved.

3. An application to a nonlocal equation

In this section we illustrate the use of the concentration-compactness method
for nonlocal equations by proving the stability of solitary-wave solutions of the
equation

(3.1) ut + uux − (Lu)x = 0,
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derived by Kubota, Ko and Dobbs [KKD] as a model for long internal waves in a
stratified fluid. Here L is the Fourier multiplier operator defined by

L̂w(k) = m(k)ŵ(k),

where

m(k) = β1

(
k coth(kH1)− 1

H1

)
+ β2

(
k coth(kH2)− 1

H2

)

and β1, β2, H1, H2 are positive constants. By a solitary-wave solution of (3.1)
we mean a solution of the form uS(x, t) = g(x − Ct), where C ∈ R; but often
we will abuse terminology slightly and use the term solitary wave to refer to the
profile function g corresponding to such a solution. Here “solution” means “classical
solution”; it is no gain of generality to consider distribution solutions, since it turns
out that if g ∈ L2 and uS satisfies (3.1) in the sense of distributions, then g must
in fact be infinitely differentiable (see Lemma 3.3 of [ABS]).

When H1 = H2 (or when one of β1 or β2 is zero), equation (3.1) has the
structure of a completely integrable Hamiltonian system [KSA,LR,R] and explicit
multisoliton solutions are known [J,JE]. In particular, the solitary-wave solutions
of (3.1) in this case are given by u(x, t) = φC,H(x + x0 − Ct), where C > 0 and
x0 ∈ R are arbitrary, H denotes the common value of H1 and H2, and

φC,H(ξ) =
[
2a(β1 + β2) sin aH

cosh aξ + cos aH

]
,

with a ∈ (0, π/H) determined by the equation

aH cot aH = 1− CH

β1 + β2
.

The stability of these solitary waves was studied in [AB], where it was shown that
a result similar to Theorem 1.1 holds for φC,H for all positive values of C and H.

In the general case when H1 is not equal to H2, equation (3.1) does not appear
to be completely integrable (cf. [BD]), nor is there any known explicit formula
for solitary waves. However, in [ABS] it is shown that solitary-wave solutions do
exist for all positive values of β1, β2, H1 and H2 and all positive wavespeeds C.
Moreover, when H1 is near H2 one has the following stability result:

Theorem 3.1 [ABS]. Let β1, β2, H, C be arbitrary positive numbers. Then
there exists η > 0 such that if H1 = H and |H2−H1| < η then (3.1) has a solution
uS(x, t) = φ(x − Ct) which is stable in the following sense: for every ε > 0, there
exists δ > 0 such that if

inf
y∈R

‖u0 − φ(·+ y)‖ 1
2

< δ,

then the solution u(x, t) of (3.1) with u(x, 0) = u0 satisfies

inf
y∈R

‖u(·, t)− φ(·+ y)‖ 1
2

< ε

for all t ∈ R.

This result leaves open the question of whether stable solitary-wave solutions of
(3.1) exist when H1 is not close to H2. The following theorem answers this question
in the affirmative, albeit with possibly a broader interpretation of stability than that
given in Theorem 3.1.
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Theorem 3.2. Let β1, β2, H1, H2 be arbitrary positive numbers. For each
q > 0 there exists a nonempty set Gq, consisting of solitary-wave solutions g of
(3.1) having positive wavespeeds and satisfying Q(g) = q, which is stable in the
following sense: for every ε > 0 there exists δ > 0 such that if

inf
g∈Gq

‖u0 − g‖ 1
2

< δ,

then the solution u(x, t) of (3.1) with u(x, 0) = u0 satisfies

inf
g∈Gq

‖u(·, t)− g‖ 1
2

< ε

for all t ∈ R.

We will prove Theorem 3.2 following the same steps as used in the preceding
section to prove Theorem 2.9 and its corollary. First define functionals Q and E
on H1/2 by

Q(u) =
1
2

∫ ∞

−∞
u2 dx

and

E(u) =
1
2

∫ ∞

−∞

[
uLu− 1

3
u3

]
dx,

and give Iq and Gq the same definitions as in Section 2. To each minimizing
sequence for Iq we associate a number α ∈ [0, q] using the same procedure as in
Section 2.

Analogues of Lemmas 2.1 through 2.4 are as follows.

Lemma 3.3. Suppose B > 0 and δ > 0 are given. Then there exists η =
η(B, δ) > 0 such that if f ∈ H1/2 with ‖f‖1/2 ≤ B and |f |3 ≥ δ, then

sup
y∈R

∫ y+2

y−2

|f(x)|3 dx ≥ η.

Proof. The proof of this lemma is contained in the proofs of Lemmas 3.7, 3.8,
and 3.9 of [ABS]; but for completeness we recall the proof here. Choose a smooth
function ζ : R → [0, 1] with support in [−2, 2] and satisfying

∑
j∈Z ζ(x − j) = 1

for all x ∈ R; and define ζj(x) = ζ(x − j) for j ∈ Z. The map T : Hs → l2(Hs)
defined by

Tf = {ζjf}j∈Z

is clearly bounded for s = 0 and s = 1, and hence by interpolation ([BL], Section
5.6) is also bounded for s = 1/2; that is, there exists A0 > 0 such that for all
f ∈ H1/2, ∑

j∈Z

‖ζjf‖21
2
≤ A0‖f‖21

2
.

Now let A1 be a positive number such that
∑

j∈Z |ζ(x−j)|3 ≥ A1 for all x ∈ R.
We claim that for every function f ∈ H1/2 which is not identically zero, there exists
an integer j0 such that

‖ζj0f‖21
2
≤ (

1 + A2|f |−3
3

) |ζj0f |33,
where A2 = A0B

2/A1. To see this, assume to the contrary that

‖ζjf‖21
2

>
(
1 + A2|f |−3

3

) |ζjf |33
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holds for every j ∈ Z. After summing over j we obtain

A0‖f‖21
2

>
(
1 + A2|f |−3

3

) ∑

j∈Z

|ζjf |33,

and hence
A0B

2 >
(
1 + A2|f |−3

3

)
A1|f |33 = A1|f |33 + A0B

2,

which is a contradiction.
Finally, observe that from the claim just proved and the assumptions of the

lemma it follows that
‖ζj0f‖21

2
≤ (

1 + A2/δ3
) |ζj0f |33,

whereas by the Sobolev embedding theorem one has

|ζj0f |3 ≤ A3‖ζj0f‖ 1
2
,

with a constant A3 that is independent of f . Hence

|ζj0f |3 ≥
[
A2

3(1 + A2/δ3)
]−1

,

and since ∫ j0+2

j0−2

|fj |3 dx ≥ |ζj0f |33,

the statement of the lemma follows immediately with η =
[
A2

3(1 + A2/δ3)
]−3. ¤

Lemma 3.4. For all q1 > 0, one has

−∞ < Iq1 < 0.

Proof. Choose ψ ∈ H1/2 such that Q(ψ) = q1 and
∫

ψ3 dx 6= 0, and for each
θ > 0, define ψθ by ψθ(x) =

√
θψ(θx). Observe that 0 ≤ m(k) ≤ (β1 + β2)|k| for

all k ∈ R. Hence, using Parseval’s identity and taking into account the action of
dilation on Fourier transforms, we have

∫
ψθL(ψθ) dx =

1
θ

∫
m(k)|ψ̂(k/θ)|2 dk

=
∫

m(θk)|ψ̂(k)|2 dk ≤ (β1 + β2)θ‖ψ‖21
2
.

Therefore

E(ψθ) ≤ (β1 + β2)θ
2

‖ψ‖21
2
− θ1/2

6

∫
ψ3 dx,

and so for θ = θ0 sufficiently small one has E(ψθ0) < 0. Since Q(ψθ0) = q1 it follows
that Iq1 < 0.

To show that Iq1 > −∞, we proceed as in the proof of Lemma 2.2, except that
here we use the estimates

∣∣∣∣
∫

ψ3 dx

∣∣∣∣ ≤ A‖ψ‖31
6
≤ A‖ψ‖20‖ψ‖ 1

2
≤ ε‖ψ‖21

2
+ Aε‖ψ‖40,
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valid for any ε > 0 with Aε depending only on ε, and

E(ψ) = E(ψ) + Q(ψ)−Q(ψ)

=
1
2

∫ [
(ψLψ + ψ2

]
dx− 1

6

∫
ψ3 dx−Q(ψ)

≥ A

2
‖ψ‖21

2
− ε

6
‖ψ‖21 −

1
6
Aε,q1 − q1,

where Aε,q1 depends only on ε and q1, and A is chosen so that 1 + m(k) ≥ A|k| for
all k ∈ R. ¤

Lemma 3.5. If {fn} is a minimizing sequence for Iq, then there exist constants
B > 0 and δ > 0 such that

1. ‖fn‖ 1
2
≤ B for all n and

2. |fn|3 ≥ δ for all sufficiently large n.

Proof. Choosing A such that 1 + m(k) ≥ A|k| for all k ∈ R, we have by
Parseval’s inequality and Sobolev embedding and interpolation theorems that

A

2
‖fn‖21

2
≤ E(fn) + Q(fn) +

1
6

∫
f3

n dx

≤ sup
n

E(fn) + q +
A

6
‖fn‖31/6

≤ A
(
1 + ‖fn‖20‖fn‖ 1

2

)

≤ A
(
1 + ‖fn‖ 1

2

)
.

From here the proof is the same as the proof of Lemma 2.3. ¤

Lemma 3.6. For all q1, q2 > 0, one has

I(q1+q2) < Iq1 + Iq2 .

Proof. Since m(k) is not a homogeneous function of k, we cannot use the
argument in the proof of Lemma 2.4. Instead, we use an argument from [L2], pp.
228-229. First we claim that for θ > 1 and q > 0,

Iθq < θIq.

To see this, let {fn} be a minimizing sequence for Iq, and define f̃n =
√

θfn for all
n, so that Q(f̃n) = θq and hence E(f̃n) ≥ Iθq for all n. Then for all n we have

Iθq ≤ E(f̃n) =
1
2

∫ [
f̃nLf̃n − 1

3
f̃3

n

]
dx = θE(fn) +

1
6
(θ − θ3/2)

∫
f3

n dx.

Now taking n →∞ and using Lemma 3.5.2, we obtain

Iθq ≤ θIq +
1
6
(θ − θ3/2)δ < θIq,

and so the claim is proved.
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Now suppose one of q1 and q2 is greater than the other, say q1 > q2. Then
from the claim just proved, it follows that

I(q1+q2) = Iq1(1+q2/q1) < (1 +
q2

q1
)Iq1

< Iq1 +
q2

q1

(
q1

q2
Iq2

)
= Iq1 + Iq2 ,

as desired. Also, in the remaining case when q1 = q2, we have

I(q1+q2) = I2q1 < 2Iq1 = Iq1 + Iq2 ,

and so the proof is complete. ¤

The statement and proof of Lemma 2.5 go through unchanged in the present
situation (except that H1 is replaced by H1/2) and so will not be repeated here.
Before proceeding to the analogue of Lemma 2.6, we need the following result (cf.
Lemma 3.10 of [ABS]).

Lemma 3.7. There exists a constant A > 0 such that if θ is any continuously
differentiable function with θ and θ′ in L∞, and f is any L2 function, then

|[L, θ]f |2 ≤ A|θ′|∞|f |2,
where [L, θ]f denotes the commutator L(θf)− θ(Lf).

Proof. By a standard density argument, it suffices to prove the result for
arbitrary functions θ and f in C∞0 (R).

Write L = d
dxT , where T is the Fourier multiplier operator defined by T̂ f(k) =

σ(k)f̂(k) with σ(k) = m(k)/ik. Since σ(k) is bounded on R, then T is a bounded
operator on L2. Moreover, it is easily verified that

sup
k∈R

|k|n
∣∣∣∣
(

d

dk

)n

σ(k)
∣∣∣∣ < ∞

for all n ∈ N, and hence by Theorem 35 of [CM] there exists A1 > 0 such that

|[T, θ](f ′)|2 ≤ A1|θ′|∞|f |2
for all functions θ and f in C∞0 (R). Therefore

|[L, θ]f |2 =
∣∣∣∣T

d

dx
(θf)− θT

(
df

dx

)∣∣∣∣
2

≤ |T (θ′f)|2 + |[T, θ](f ′)|2
≤ ‖T‖ |θ′|∞|f |2 + A1|θ′|∞|f |2,

where ‖T‖ denotes the norm of T as an operator on L2. Thus the lemma has been
proved with A = ‖T‖+ A1. ¤

Lemma 3.8. For every ε > 0, there exist a number N ∈ N and sequences
{gN , gN+1, . . . } and {hN , hN+1, . . . } of functions in H1/2 such that for every n ≥
N ,

1. |Q(gn)− α| < ε
2. |Q(hn)− (q − α)| < ε
3. E(fn) ≥ E(gn) + E(hn)− ε
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Proof. As in the proof of Lemma 2.6, we choose r ∈ R and N ∈ N so large
that

α− ε < Mn(r) ≤ Mn(2r) < α + ε

for all n ≥ N , and define sequences {gn} and {hn} by gn(x) = φr(x − yn)fn(x)
and hn(x) = ψr(x− yn)fn(x) where φ and ψ are as before and yn is chosen so that
(2.1) and (2.2) hold. Then statements 1 and 2 follow, and it remains to prove the
third statement. We write

E(gn) + E(hn) =

=
1
2

[∫
φ2

rfnLfn dx +
∫

φrfn[L, φr]fn dx

]

+
1
2

[∫
ψ2

rfnLfn dx +
∫

ψrfn[L,ψr]fn dx

]

−1
6

∫
φ2

rf
3
n dx− 1

6

∫
ψ2

rf3
n dx

+
1
6

∫
(φ2

r − φ3
r)f

3
n dx +

1
6

∫
(ψ2

r − ψ3
r)f3

n dx,

where again for brevity the arguments of the functions φr(x− yn) and ψr(x− yn)
have been omitted. Now using Hölder’s inequality and Lemmas 3.5.1 and 3.7, and
arguing as in the proof of Lemma 2.6, we obtain

E(gn) + E(hn) = E(fn) + O(1/r) + O(ε),

where O(1/r) and O(ε) denote terms bounded by A/r and Aε, with constants A
independent of r and n. The proof now concludes as before. ¤

Corollary 2.7 holds in the present context without change of statement or proof,
and the same is true of Lemma 2.8 except that here the last display in its proof
should be modified to read

η ≤
(∫ yn+2

yn−2

|fn|2 dx

)1/2 (∫ yn+2

yn−2

|fn|4 dx

)1/2

≤
(∫ yn+2

yn−2

|fn|2 dx

)1/2 (∫ ∞

−∞
|fn|4 dx

)1/2

≤ AB2

(∫ yn+2

yn−2

|fn|2 dx

)1/2

,

where A is the Sobolev constant in the embedding of L4 into H1/2.
Thus all the preliminaries for the proofs of Theorem 2.9 and Corollary 2.10

have been established, and these proofs now apply in the present context without
modification (except for the replacement of the H1 norm by the H1/2 norm). To
complete the demonstration of Theorem 3.2 it remains only to justify the statement
made there that the set Gq consists of solitary-wave solutions of (3.1) having positive
wavespeeds. If g ∈ Gq then by the Lagrange multiplier principle (cf. the proof of
Proposition 2.11) there exists λ ∈ R such that

δE(g) + λ δQ(g) = 0,
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where the Fréchet derivatives δE and δQ are given by

δE(g) = Lg − 1
2
g2,

δQ(g) = g.

Hence u(x, t) = g(x−λt) solves (3.1), or in other words g is a solitary-wave solution
of (3.1) with wavespeed λ. To see that λ > 0, note first that

d

dθ
[E(θg)]θ=1 =

d

dθ

[
θ2

2

∫
gLg dx− θ3

3

∫
g3 dx

]

θ=1

=
∫

gLg dx−
∫

g3 dx = 2E(g)− 1
3

∫
g3 dx.

But from Lemmas 3.4 and 3.5.2 we have E(g) = Iq < 0 and
∫

g3 dx > 0, so that

d

dθ
[E(θg)]θ=1 < 0.

Now, using the definition of the Fréchet derivative, we have

d

dθ
[E(θg)]θ=1 =

∫
δE(g) · d

dθ
[θg]θ=1 dx = −λ

∫
δQ(g) · g dx = −λ

∫
g2 dx;

and since
∫

g2 dx > 0 it follows that λ > 0 as claimed.

Remark. There remains the question of whether a stability result such as
Theorem 3.1 holds for solitary-wave solutions of (3.1) for arbitrary values of H1

and H2. As noted in Section 2, such a result could be established if it could be
shown that the set Gq consists of the translates of a single function. For this, in
turn, it would suffice to show that solitary-wave solutions of (3.1) are unique up
to translations. (Note that in the absence of a uniqueness result, we do not even
know whether the solitary waves discussed in [ABS] are the same as those in the
sets Gq.) Such a uniqueness result has indeed been proved for the case H1 = H2

[A2,AT], but the existing proofs rely heavily on an algebraic property of equation
(3.1) which does not hold in the case H1 6= H2.

Alternatively, a result like Theorem 3.1 may follow from a local analysis such
as that appearing in [A1] and [AB]; a major obstacle to this approach, however,
is the lack of an explicit formula for solitary-wave solutions when H1 6= H2.

4. Further results

Clearly the proof of Theorem 3.2 did not rely heavily on special properties of
the operator L appearing in equation (3.1), and similar results may be obtained in
more general settings. For an equation of type (1.5), for example, all the arguments
used to prove Theorem 3.2 will go through without change under the following
assumptions on the function f(u) and the symbol m(k) of the operator L:

A1|k|s ≤ m(k) ≤ A2|k|s for all k ≥ 1,(4.1)
where A1, A2 are positive constants and s ≥ 1;

(4.2) m(k) ≥ 0 for all k ∈ R;
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(4.3) sup
k∈R

|k|n
∣∣∣∣
(

d

dk

)n (
m(k)

k

)∣∣∣∣ < ∞ for all n ∈ N;

and either

(4.4a) f(u) = |u|p+1 for some p ∈ (0, 2s)

or

(4.4b) f(u) = up+1 for some p ∈ N satisfying p < 2s.

Assumptions (4.1) and (4.4) are used in proving analogues of Lemmas 3.4 and 3.5.1;
the condition p < 2s guarantees that the Sobolev embedding theorem can be used
in these proofs in the same way as in Section 3. The proof of Lemma 3.5.2 made
use of the positivity of the symbol m(k), and assumption (4.2) guarantees that the
same proof applies here. Finally, assumption (4.3), or some such condition on the
regularity and decay of m(k), is needed to prove an analogue of Lemma 3.7. As
the proof of Lemma 3.7 shows, (4.3) implies that the operator L is nearly a local
operator, in the sense that Lu is small at points far away from the support of u.

From these observations there results the following theorem on stability of sol-
itary-wave solutions of (1.5):

Theorem 4.1. Suppose that assumptions (4.1), (4.2), (4.3) and either (4.4a)
or (4.4b) above hold for the functions f(u) and m(k). Then for each q > 0 there
exists a nonempty set Gq, consisting of solitary-wave solutions g of (1.5) having
positive wavespeeds and satisfying Q(g) = q, which is stable in the following sense:
for every ε > 0 there exists δ > 0 such that if

inf
g∈Gq

‖u0 − g‖s/2 < δ,

then the solution u(x, t) of (1.5) with u(x, 0) = u0 satisfies

inf
g∈Gq

‖u(·, t)− g‖s/2 < ε

for all t ∈ R.

Examples of equations to which the assumptions of Theorem 4.1 apply are the
Benjamin-Ono equation [B1] and the Smith equation [S], which correspond to the
dispersion operators with symbols m(k) = |k| and m(k) =

√
1 + k2−1, respectively.

For the Benjamin-Ono equation in the case f(u) = u2, there is a unique solitary-
wave solution (up to translation) [AmT1], and hence in this case the stability result
of Theorem 4.1 implies a stronger result like that of Theorem 1.1. Such a result
is already known (cf. [BBSSS]), but for the Benjamin-Ono equation with other
nonlinearities f(u) and for the Smith equation, Theorem 4.1 appears to be the only
stability result available to date.

For the fifth-order KdV-type equation

(4.5) ut + upux + uxxx − δuxxxxx = 0,

assumptions (4.1) through (4.4) hold with s = 4 if p < 8 and δ > 0, and so in
this case Theorem 4.1 implies existence of non-empty stable sets of solitary-wave
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solutions Gq for each q > 0. Each element g of Gq, being a solitary-wave solution
of (4.5) with positive wavespeed, will satisfy the equation

(4.6) Cg − g′′ + δg′′′′ =
gp+1

p + 1
,

for some C > 0. In their study [AmT2] of equation (4.6) in the case p = 1, Amick
and Toland showed that for all C > 0 and δ > 0, even solutions g(x) exist which
satisfy g(0) > 0 and which decay to zero as |x| → ∞; the decay being monotonic
in |x| if C ≤ 1/(4δ) and oscillatory otherwise. We do not know which (if any) of
these solutions of (4.6) are also contained in the stable sets Gq.

An interesting question is whether a result such as Theorem 4.1 holds for equa-
tions in which the symbol m(k) is not everywhere positive, i.e., when assumption
(4.2) does not hold. An equation of possible physical interest in which this situation
obtains is the Benjamin equation

ut + uux +Huxx + δuxxx = 0,

derived in [B3] as a model for interfacial waves in a stratified fluid in the presence
of strong surface tension. Here H denotes the Hilbert transform, δ > 0, and the
equation fits the form (1.5) with symbol m(k) = −|k|+ δk2. It is shown in [ABR]
that for large values of C, there exist oscillatory solitary-wave solutions u(x, t) =
φ(x−Ct) which have a strong stability property like that expressed in Theorem 1.1;
but for smaller values of C (which are the values of physical interest), it remains
an open question whether stable solitary-wave solutions exist. Similarly, for the
equation

ut + uux − uxxx − δuxxxxx = 0,

with δ > 0, Amick and Toland proved in [AmT2] the existence of oscillatory
solitary waves at least for some values of the wavespeed C, but again Theorem 4.1
does not apply because the associated symbol m(k) = −k2 + δk4 is not everywhere
positive.

Finally, another interesting direction for generalization of the above arguments
would be to systems of nonlocal equations, such as those derived by Liu, Kubota,
and Ko for modelling interactions between waves on neighboring pycnoclines within
a stratified fluid (cf. [ABS,LKK]).
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[BL] J. Bergh and J. Löfstrom, Interpolation spaces: an introduction, Springer-Verlag, New

York, 1976.
[Bo] J. Bona, On the stability theory of solitary waves, Proc. Roy. Soc. London Ser. A 344

(1975), 363–374.
[BS] J. Bona and A. Soyeur, On the stability of solitary-wave solutions of model equations

for long waves, J. Nonlinear Sci. 4 (1994), 449–470.
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