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1. Introduction. The intermediate long-wave equation was introduced by R. I.

Joseph [4] as a mathematical model of nonlinear dispersive waves on the interface

between two fluids of different positive densities contained at rest in a long channel

with a horizontal top and bottom, the lighter fluid forming a horizontal layer above

a layer of the same depth of the heavier fluid. When variables have been re-scaled

it is the pseudo-differential operator equation (see [5])

ηt + 2ηηx − (NHη)x + (1/H)ηx = 0, (1)

where H > 0 and the Fourier multiplier operator NH is given by

N̂Hη(k) = (k coth kH)η̂(k).

In common with the classical KdV and Benjamin-Ono equations, between which

it was intended to form a model-theoretical bridge [4], equation (1) was found to

have a family of exact solitary-wave solutions: namely,

η(x, t) = φC,H(x− Ct),
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where

φC,H(x) =

[
a sin aH

cosh ax+ cos aH

]
, x ∈ R,

for arbitrary C > 0 and H > 0, and a is the unique solution of the transcendental

equation

aH cot aH = (1 − CH), a ∈ (0, π/H).

Hence φC,H is an L2 solution of the steady travelling wave equation

NHψ + µψ = ψ2, µ = C − (1/H). (2)

(For general L2 functions ψ, both sides of (2) are well-defined tempered distribu-

tions. We will see below that any L2 solution of (2) is a C∞ function and hence

yields a classical solution of (1).) Explicit dependence of (2) upon H may be scaled

away by putting

φ(x) = Hψ(Hx) and N̂φ(k) = (k coth k)φ̂(k).

Then

(N + γ)φ = φ2, γ > −1. (3)

A study of the set of all L2 solutions for γ > −1 of (3) is therefore equivalent to a

study of the set of all L2 solutions of (2) for all positive values of H and C.

The rest of this paper focuses on (3), and we prove the following theorem. Let

γ > −1 be fixed and let

σ cotσ + γ = 0, σ ∈ (0, π).

Theorem. Suppose that φ is an L2 solution of (3). Then

(a) (
dφ

dx
(x)

)2

= 2γφ3(x) − φ4(x) + σ2φ2(x), x ∈ R;

(b) for some p ∈ R,

φ(x+ p) = Real f(x+ i0),
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where f is a solution on R× [0, 1] ⊂ C of the complex analytic initial-value

problem

∂f

∂z
=
i

2

[
f(z)2 + σ2

]
, f(0, 0) = φ(p);

(c) If u is a harmonic function in the strip R × [0, 1] with u(x, 0) = φ(x) and

u(x, 1) = 0, then

∂u

∂y
= γu− u2 on y = 0.

(d) For (x, y) ∈ R × [0, 1],

∂u

∂y
(x, y) = γ(y)u(x, y) − u2(x, y)

and

uxx(x, y) − 3γ(y)u2(x, y) + 2u3(x, y) − σ2u(x, y) = 0,

where

γ(y) = σ cot(σ(y − 1)).

Remarks.

1. The ordinary differential equation in part (a) is easily solved explicitly to

yield the uniqueness (up to translation) of the known solitary-wave solution

of the intermediate long-wave equation

φ(x) =

[
σ sinσ

coshσx+ cosσ

]
.

2. The key to the proof is part (c), which follows easily by the Fourier inver-

sion formula. Part (b) then follows by the maximum principle as in the

treatment of the Benjamin-Ono equation in [3]. (As was the case in [3],

the basic maximum principle for harmonic functions is not enough for our

purposes: rather, the proof relies heavily on the maximum principle and

Hopf boundary point lemma for general elliptic inequalities [6].) From a

pedagogical viewpoint it is worth emphasizing that every solution of the
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complex equation in (b) has a real part which satisfies part (d) away from

its poles. It is routine to check that the real part then yields a solution of

the intermediate long wave equation on {y = 0}. In this sense, the function

f might be regarded as a kind of generating function for the function u in

(c) and φ in equation (3).

3. It is possible to derive part (a) of the Theorem as a consequence of the

properties of the operator N on L2(R), without appealing to maximum

principle arguments in the plane. This approach is detailed in [1].

Notation. Throughout we use Lp(R) and Hs(R) to denote the usual Lebesgue

and Sobolev spaces of (equivalence classes of) functions on R. Recall that every

function in H1(R) is continuous. If f ∈ H1(R) then f̂ is in L1(R), where f̂ , the

Fourier transform of f , is defined by

f̂(k) =

∫ ∞

−∞

eikxf(x) dx.

2. Preliminaries.

The proof will involve studying a solution u of Laplace’s equation on the infinite

strip S = R× (0, 1) in R2, with Dirichlet data equal to φ on the lower boundary of

the strip. In order to make use of maximum principle arguments to study u, it will

be necessary to establish that u is regular on S up to the boundary of S. The next

two Lemmas show that the desired regularity properties of u can be deduced from

a priori regularity estimates on φ.

Lemma 1. If φ is any L2 solution of (3) then φ, Nφ and all their derivatives are

in Lp for 1 ≤ p ≤ ∞.

Proof. If (3) holds, then the Fourier transform of φ satisfies the equation

φ̂(k) = (k coth k + γ)−1φ̂2(k); which may be rewritten in convolution form as

φ = K ∗ φ2 (4)

where K̂(k) = (k coth k + γ)−1.



5

Now we claim that K ∈ Lp for 1 ≤ p <∞. To see this, first write the even func-

tion K as the inverse Fourier transform K(x) = 1
2π

∫∞

−∞
[k coth k + γ]

−1
e−ikx dk,

and then use Jordan’s Lemma and the Residue Theorem to arrive at the formula

K(x) =

∞∑

j=0

e−θj |x|

[
2 sin2 θj

2θj − sin(2θj)

]

where {θj}j=0,1,2,... are the positive solutions of θj cot θj + γ = 0. Since jπ < θj <

(j + 1)π for all j ≥ 0, one can find a constant A (independent of x) such that

|K(x)| ≤ A


e−θ0|x| +

∞∑

j=1

(
1

j

)
e−jπ|x|




= A
[
e−θ0|x| + | log

(
1 − e−π|x|

)
|
]
.

But the latter function decays exponentially as |x| → ∞ and blows up only loga-

rithmically as x→ 0. Thus the claim is proved.

Next it will be proved, by induction on j, that ( d
dx )jφ ∈ Lp for 1 ≤ p <∞. The

statement for j = 0 follows immediately from the formula φ = K ∗φ2, the fact that

φ2 ∈ L1, the just-proved claim, and Young’s convolution inequality. Assume now

that the statement has been proved for 0, 1, 2, . . . , j. Then the derivatives of φ of

order up to j are in L4, and it follows from Holder’s inequality that ( d
dx )j(φ2) ∈ L2.

But the operator ( d
dx )(N + γ)−1 is bounded on L2, as it is a Fourier multiplier

operator with the bounded multiplier (−ik)[k coth k + γ]−1. Since ( d
dx )j+1φ =

d
dx (N + γ)−1( d

dx )j(φ2) by (3), then ( d
dx )j+1φ ∈ L2 also. Holder’s inequality and

the induction hypothesis now imply that ( d
dx )j+1(φ2) ∈ L1. From ( d

dx )j+1φ =

K ∗ ( d
dx )j+1(φ2) it now follows that ( d

dx )j+1φ ∈ Lp for all 1 ≤ p < ∞, and so the

inductive proof is complete.

Since L∞(R) is contained in H1(R), a consequence of what has just been proved

is that all the derivatives of φ are also in L∞.

Finally, sinceNφ = φ2−γφ by (3), it follows easily thatNφ and all its derivatives

are in Lp for 1 ≤ p ≤ ∞. �

Lemma 2. Let φ be an L2 solution of (3). There exists a function u ∈ C2(S̄) such

that

(i) ∆u = 0 on S
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(ii) u(x, 0) = φ(x) for x ∈ R

(iii) u(x, 1) = 0 for x ∈ R

(iv) u(x, y) → 0, uniformly for y ∈ [0, 1], as |x| → ∞

(v) ux(x, y) → 0, uniformly for y ∈ [0, 1], as |x| → ∞

(vi) uy(x, 0) = −Nφ(x) for x ∈ R. In particular,

uy(x, 0) = γu(x, 0) − u2(x, 0), x ∈ R.

Proof. Once it is known that φ is sufficiently regular, this result is a consequence

of standard potential theory. For completeness, however, we give the simple, self-

contained proof here.

For (x, y) ∈ S̄ define

u(x, y) =
1

2π

∫ ∞

−∞

e−ikx

[
sinh k(1 − y)

sinh k

]
φ̂(k) dk.

By Lemma 1, φ̂ is bounded and integrable. So for y > 0 the rapid decay of the

function in brackets in the integrand allows differentiation under the integral as

often as desired and property (i) follows. Property (iii) is immediate from the

formula and property (ii) is a consequence of the Fourier inversion formula.

To prove properties (iv) and (v), observe that for y > 0 the formula for u(x, y)

may be rewritten as

u(x, y) =

∫ ∞

−∞

H(y; z)φ(x− z) dz

where

Ĥ(y; ·)(k) =
sinh k(1 − y)

sinh k
.

A calculation (or a table of Fourier transforms) shows that

H(y;x) =
(1/2) sin δ

[cosh(πx) + cos δ]
, δ = π(1 − y)

and clearly

sup
y∈[0,1]

∫

|z|≥R

H(y; z) dz → 0 as R→ ∞. (4)
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It follows that for all x ∈ R

sup
y∈[0,1]

|u(x, y)| ≤

(
sup

y∈[0,1]

∫

|z|≤|x|/2

H(y; z)|φ(x− z)| dz

)

+

(
sup

y∈[0,1]

∫

|z|≥|x|/2

H(y; z)|φ(x− z)| dz

)

≤

(
sup

y∈[0,1]

∫ ∞

−∞

H(y; z) dz

)(
sup

|w|≥|x|/2

|φ(w)|

)

+

(
sup

y∈[0,1]

∫

|z|≥|x|/2

H(y; z) dz

)(
sup
w∈R

|φ(w)|

)
.

Since φ ∈ H1, then φ(x) → 0 as |x| → ∞, and so the first term in the last

expression tends to zero as |x| → ∞. The second term also tends to zero, by (4).

Thus (iv) has been proved. The proof of (v) proceeds similarly from the fact that

ux(x, y) =
∫∞

−∞
H(y; z)φ′(x− z) dz.

Property (vi) follows immediately from the definition of u by differentiation un-

der the integral with respect to y, which is justified by the Dominated Convergence

Theorem and the fact that kφ̂(k) is an L1 function of k.

It remains only to show that u is C2 at the boundary y = 0. For this, it suffices

to prove that u and its partial derivatives up to second order converge uniformly,

as functions of x, to their boundary values as y → 0. But for all x ∈ R,

|u(x, y) − u(x, 0)| =

∣∣∣∣
1

2π

∫ ∞

−∞

e−ikx

[(
sinh k(1 − y)

sinh k

)
− 1

]
φ̂(k) dk

∣∣∣∣

≤
1

2π

∫ ∞

−∞

∣∣∣∣
(

sinh k(1 − y)

sinh k

)
− 1

∣∣∣∣ |φ̂(k)| dk,

and the convergence of the latter integral to zero as y → 0 is assured by the Dom-

inated Convergence Theorem. Similar arguments prove that ux(x, y) → ux(x, 0)

and uxx(x, y) → uxx(x, 0) uniformly as y → 0. Also, using (vi), one has

|uy(x, y) − uy(x, 0)| =

∣∣∣∣
−1

2π

∫ ∞

−∞

e−ikx

[
k cosh k(1 − y)

sinh k
− k coth k

]
φ̂(k) dk

∣∣∣∣ ,

and so again uniform convergence as y → 0 follows from the Dominated Conver-

gence Theorem. Finally, since uyy = −uxx for y > 0, it follows that uyy also

converges, uniformly in x, as y → 0. This completes the proof of the Lemma. �
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Remark. It follows from the maximum principle for harmonic functions, applied

to domains [−R,R] × [0, 1], for R sufficiently large, that the conditions (i)–(iv) of

Lemma 2 determine u uniquely in C2(S̄).

3. Proof of the main theorem.

The proof of the main theorem is now done via a sequence of lemmas. Since

the theorem is obviously true when the solution φ of (3) is identically zero, it will

be assumed in what follows that φ is non-trivial (and hence that the function u

defined in Lemma 2 is not identically zero on S). We begin with some estimates.

Lemma 3. The function u defined in Lemma 2 satisfies

(i) u(x, y) > 0 for all (x, y) ∈ R × [0, 1)

(ii) uy(x, 1) < 0 for all x ∈ R.

Proof. First it will be shown that u ≥ 0 on S̄. Recall that γ > −1 and suppose that

u takes a negative value at some point of S̄. Then the function w(x, y) =
u(x, y)

1 + γy

also takes a negative value at some point of S̄. Moreover,

w → 0 (uniformly for y ∈ [0, 1]) as |x| → ∞,

and w satisfies the elliptic equation

∆w +

(
2γ

1 + γy

)
wy = 0.

Therefore, w satisfies a maximum principle (cf. Theorem 5, p. 61 of [6]) which

implies that the minimum value of w must be attained at a point on the boundary

of S̄. Since w is zero on the line y = 1, then the minimum value of w is attained

at a point where y = 0. Moreover, by the Hopf boundary-point lemma (Theorem

7, p. 65 of [6]), wy > 0 at this point. But when y = 0, one has wy = uy − γu,

and uy = γu−u2 by Lemma 2(ii), (vi), and equation (3). Together these equations

imply that wy = −u2 ≤ 0 for y = 0, which is a contradiction. Thus u ≥ 0 on S̄.

Since u is not identically zero on S, it now follows from the maximum principle

that u > 0 at all points in S. To prove that u > 0 also holds on {y = 0}, one
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assumes that u = 0 at some point where y = 0, and uses the fact that w has a

minimum value at that point to derive a contradiction by the Hopf boundary point

lemma, as in the preceding paragraph. Thus the proof of (i) is complete.

To prove (ii), observe that from (i) and Lemma 2(iii) it follows that u attains its

minimum value on S̄ at all the points where y = 1. That uy(x, 1) < 0 for all x is

immediate by the Hopf boundary point lemma. �

The next four Lemmas contain estimates of the behavior of u and ux as |x| → ∞.

These estimates are obtained by comparing u and ux to functions of the form

Γα(x, y) = e−( π
2
+α)x cos

((π
2

+ α
)
y − α

)
, α ∈ (−π/2, π/2).

These functions are harmonic, positive for 0 ≤ y < 1, and satisfy

Γα = 0, y = 1 and
∂(Γα)

∂y
=
[(π

2
+ α

)
tanα

]
Γα, y = 0.

In particular,

(Γα̃)y = γ(Γα̃) if y = 0 and (π/2 + α̃) tan α̃ = γ.

Lemma 4. There exists A > 0 such that

u(x, y) ≥ AΓα̃(x, y) for all (x, y) ∈ [0,∞) × [0, 1],

and

u(x, y) ≥ AΓα̃(−x, y) for all (x, y) ∈ (−∞, 0] × [0, 1].

Proof. By Lemma 3, u(0, y) > 0 for all y ∈ [0, 1) and uy(0, 1) < 0. Hence a

number A > 0 can be chosen so that u(0, y) ≥ AΓα̃(0, y) for all y ∈ [0, 1). Let

Ω = (0,∞) × (0, 1). Then the function

w(x, y) =

(
u(x, y) −AΓα̃(x, y)

1 + γy

)

satisfies an elliptic equation on Ω, as in the proof of Lemma 3, and hence obeys a

maximum principle. Moreover, w vanishes (uniformly in y) as x→ ∞; so that if w



10

takes a negative value in Ω then w must attain its negative minimum at some finite

boundary point of Ω. Such a minimum point cannot occur on {y = 1}, where w = 0,

or on {x = 0}, where w ≥ 0, and hence must occur on the line {y = 0, x > 0} at a

point where wy > 0. But, as in the proof of Lemma 3, for y = 0 one has

wy = uy − γu− ((Γα̃)y − γΓα̃)

= uy − γu = −u2 ≤ 0.

This contradiction shows that w ≥ 0 on Ω. The corresponding assertion on

(−∞, 0] × [0, 1] is proved similarly. �

Lemma 5. For every α ∈ (−π/2, α̃), there exists Bα > 0 such that

u(x, y) ≤ BαΓα(x, y) for all (x, y) ∈ [0,∞) × [0, 1],

and

u(x, y) ≤ BαΓα(−x, y) for all (x, y) ∈ (−∞, 0] × [0, 1].

Proof. Let δ = (π
2 + α) tanα, α ∈ (−π/2, α̃). Then γ − δ > 0, so X ∈ R can

be found such that u(x, y) ≤ 1
3 (γ − δ) for all x ≥ X. Choose C > 0 such that

u(X, y) ≤ CΓα(X, y) for all y ∈ [0, 1]. Let Ω = (X,∞) × (0, 1); then the function

w(x, y) =

(
u(x, y) − CΓα(x, y)

1 + δy

)

satisfies an elliptic equation on Ω and vanishes, uniformly in y, as x→ ∞. Moreover,

w vanishes on the line {y = 1} and is non-positive for {x = X}. Therefore it follows,

as in the proof of the preceding Lemma, that if w takes a positive value on Ω then

w must have a positive maximum value on the line {y = 0}, and wy < 0 there. But

for y = 0 and x ≥ X one finds that

wy = uy − δu− C((Γα)y − δΓα)

= γu− u2 − δu = (γ − δ − u)u > 0,

by the choice of X. This contradiction shows that w ≤ 0 on Ω, so u ≤ CΓα on Ω.

A similar argument shows the existence of a number X ′ < 0 and a constant C ′ > 0

such that u(x, y) ≤ C ′Γα(−x, y) for x ≤ X ′ and y ∈ [0, 1]. The statement of the

Lemma now follows easily. �
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Lemma 6. For every α ∈ (−π/2, α̃), there exists Dα > 0 such that

ux(x, y) ≥ −DαΓα(x, y) for all (x, y) ∈ [0,∞) × [0, 1],

and

ux(x, y) ≥ −DαΓα(−x, y) for all (x, y) ∈ (−∞, 0] × [0, 1].

Proof. Define δ, X, X ′, and Ω as in the proof of Lemma 5, and choose D > 0 such

that

ux(X, y) ≥ −DΓα(X, y) for all y ∈ [0, 1].

Then the function

w(x, y) =

(
ux(x, y) +DΓα(x, y)

1 + δy

)

satisfies an elliptic equation on Ω, is zero on {y = 1}, and tends to zero as x→ ∞

by Lemma 2(v). The same argument as in the proof of Lemma 5 then shows that if

w takes a negative value on Ω, then it must attain a negative minimum at a point

on the line {y = 0} where wy > 0. But by Lemma 2,

wy = (uxy − δux) +D((Γα)y − δΓα)

= (uy − γu)x + (γ − δ)ux

= (−2u+ γ − δ)ux, y = 0.

Now, at the point (x0, 0) ∈ ∂Ω where w has its minimum, one has u(x0, 0) <

(γ − δ)/2 (since x0 > X) and ux(x0, 0) < 0 (otherwise w(x0, 0) would be a positive

number). Hence wy(x0, 0) < 0. This contradiction shows that ux ≥ −DΓα on Ω. A

similar argument shows the existence of D′ > 0 such that ux(x, y) ≥ −D′Γα(−x, y)

on (−∞, X ′] × [0, 1], and the statement of the Lemma follows. �

Lemma 7. There exists Dα̃ > 0 such that

ux(x, y) ≥ −Dα̃Γα̃(x, y) for all (x, y) ∈ [0,∞) × [0, 1],

and

ux(x, y) ≥ −Dα̃Γα̃(−x, y) for all (x, y) ∈ (−∞, 0] × [0, 1].
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Proof. Since α̃ ∈ (−π/2, π/2), a number α1 ∈ (−π/2, π/2) can be found such

that α̃ < α1 <
π

2
+ 2α̃. From the last inequality it then follows that a number

α2 ∈ (−π/2, π/2) may be chosen so that
α1 − (π/2)

2
< α2 < α̃. In particular, the

relation 2(
π

2
+ α2) >

π

2
+ α1 holds.

Now by Lemmas 3, 5, and 6, there exist constants Bα2
> 0 and Dα2

> 0 such

that 0 ≤ u(x, y) ≤ Bα2
Γα2

(x, y) and ux(x, y) ≥ −Dα2
Γα2

(x, y) for all (x, y) ∈

[0,∞) × [0, 1]. It follows that for all (x, y) ∈ [0,∞) × [0, 1],

uux

Γα1

≥
−Bα2

Dα2
(Γα2

(x, y))2

Γα1
(x, y)

= −Bα2
Dα2

exp([−2(π/2 + α2) + (π/2 + α1)]x)

(
sin2((π/2 + α2)(1 − y))

sin((π/2 + α1)(1 − y))

)
.

But the argument of the exponential in the right-hand side is negative, and the

quotient of sine functions is a positive bounded function of y on [0, 1). Therefore(
uux

Γα1

)
becomes greater than any given negative number as x→ ∞ (uniformly for

y ∈ [0, 1]). In particular, if δ1 = (π/2 + α1) tanα1, then γ − δ1 < 0, and so there

exists X ≥ 0 such that

(
2uux

Γα1

)
≥ γ − δ1 for all (x, y) ∈ [X,∞) × [0, 1].

We claim there exists C > 0 such that

ux(x, y) − Γα1
(x, y) ≥ −CΓα̃(x, y)

for all (x, y) ∈ [X,∞) × [0, 1]. To see this, choose C > 0 such that the inequality

holds for x = X and all y ∈ [0, 1]. Then the function

w(x, y) =
ux(x, y) − Γα1

(x, y) + CΓα̃(x, y)

(1 + γy)

satisfies an elliptic equation on Ω = (X,∞) × (0, 1), vanishes as x → ∞, and is

non-negative on the boundary where x = X or y = 1. Hence if w takes any negative

value in Ω, it must attain a negative minimum at a point in the boundary of Ω on

the line {y = 0}; and at that point one must have wy > 0. On the other hand, for

y = 0 and x ≥ X, one has

wy = (uxy − γux) − ((Γα1
)y − γΓα1

) + C((Γα̃)y − γΓα̃)

= (uy − γu)x − (δ1 − γ)Γα1

= −2uux − (δ1 − γ)Γα1
≤ 0.
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This contradiction shows that w cannot have any negative values in Ω, and so the

claim has been proved.

It now follows immediately from the claim that there exists Dα̃ > 0 such that

ux − Γα1
≥ −Dα̃Γα̃ for all (x, y) ∈ [0,∞) × [0, 1]. Since Γα1

is a positive function,

this yields the desired estimate on [0,∞) × [0, 1]. The corresponding estimate on

(−∞, 0] × [0, 1] is proved similarly. �

Now to continue with the proof of the Theorem, let v(x, y) denote the harmonic

conjugate of u on S given by the formula

v(x, y) = −

∫ x

0

uy(s, 0) ds+

∫ y

0

ux(x, t) dt.

By Lemmas 1 and 2(vi), uy(s, 0) = −Nφ(s) is an L1 function of s, and ux(x, t)

vanishes, uniformly in t, as |x| → ∞. Therefore v is a bounded function on S.

Define the function µ(x, y) on S̄ by µ = ux + uv. Then µ is harmonic on S, and

from Lemma 4, Lemma 7, and the boundedness of v, it follows that there exists a

constant r > 0 such that µ ≥ −ru on S.

Let R = inf{r ∈ R : µ ≥ −ru on S}, and let ρ be the function defined on S by

ρ = µ+Ru = ux + u(v +R). Note that ρ ≥ 0 on S̄.

Lemma 8. The function ρ is identically zero on S̄.

Proof. For each natural number n define ρn = µ+(R− 1
n )u. From the definition of R

it follows that ρn attains a negative value at some point in S. Fix δ (independent

of n) so that −1 < δ < γ, and define wn =
ρn

1 + δy
on S̄. Then wn satisfies a

maximum principle on S and vanishes for y = 1 and for |x| → ∞. Hence, since

wn takes negative values in S, there must be some point (xn, 0) in S̄ at which wn

attains its negative minimum and at which (wn)y > 0. Now for y = 0 it follows

from the Cauchy-Riemann equations that

(wn)y = (ρn)y − δρn

= [(R−
1

n
)u+ ux + uv]y − δρn

= (γ − u)[(R−
1

n
)u+ ux + uv] − δρn

= (γ − δ − u)ρn,
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where use has been made of the relation uy = γu−u2. Since (wn)y > 0 and ρn < 0

at (xn, 0), it follows that u(xn, 0) > γ−δ. This proves that the sequence {u(xn, 0)}

is bounded away from 0. Hence, since u(x, 0) → 0 as |x| → ∞, the sequence {xn}

must be bounded in R, and so has a subsequence converging to a limit x∗ ∈ R. Now

taking the limit of the inequality ρn(xn, 0) < 0 as n → ∞ yields that ρ(x∗, 0) ≤ 0.

Since ρ ≥ 0 by the choice of R, ρ(x∗, 0) = 0.

Since ρ ≥ 0 on S̄, the function ρ takes its minimum value on S̄ at the point

(x∗, 0). Therefore, if ρ is not identically zero on S̄ then the Hopf boundary point

lemma for harmonic functions implies that ρy(x∗, 0) > 0. But this is false, as

ρy = [Ru+ux +uv]y = (γ−u)[Ru+ux +uv] = (γ−u)ρ implies that ρy(x∗, 0) = 0.

Thus the Lemma has been proved. �

The proof of the main Theorem may now be completed. Define a function f of

the complex variable z = x+ iy by setting f(z) = u(x, y) + i[v(x, y) +R]. Since u

and v + R are harmonic conjugates on S, then f is holomorphic on S. Moreover,

the function G(z) = ∂f
∂z − i

2f
2, which is also holomorphic on S, has real part

ux + u(v +R) = ρ = 0 on S, and hence must be identically equal on S to a purely

imaginary constant 2iM (where M ∈ R). Therefore f is a solution of the first-order

complex differential equation

∂f

∂z
=
i

2
[f2 +M ]

which has already arisen, in a similar context, in the study of Benjamin-Ono solitary

waves appearing in [2] and [3].

The equation for f is easily integrated, to yield the solutions

f(z) =





σ tan( iσ
2 (z + C) (if M = σ2 > 0)

−σ tanh( iσ
2 (z + C) (if M = −σ2 < 0)

−2
i(z+C) (if M = 0)

where C is an arbitrary complex constant of integration. The solitary wave profile

φ(x) may be recovered from f by taking φ(x) = u(x, y)|y=0 = Real f(x + iy)|y=0.

Examination of the various possibilities shows that in order for φ to be a function in

L2(R), M cannot be negative. In the case M = 0, one finds after letting C = p+ iq
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that u(x, y) =
2(y + q)

(x+ p)2 + (y + q)2
and φ(x) =

2q

(x+ p)2 + (y + q)2
(the Benjamin-

Ono solitary wave, cf. [2] and [3]). In order for u to satisfy the requirement that

u vanish for y = 1, one must take q = −1, in which case the function u is not C2

on S̄. Therefore the only remaining possibility is that M be positive, and u is then

given by

u(x, y) =
−σ sin(σ(y + q))

cosh(σ(x+ p)) + cos(σ(y + q))
.

Here the condition that u vanish for y = 1 is met only if q = −1, in which case

φ(x) = u(x, 0) =
σ sinσ

coshσ(x+ p) + cosσ
.

The value of σ is determined by the condition that uy = γu − u2; and an easy

computation shows that this implies σ cotσ = −γ. The rest of the proof is identical

to the treatment of the Benjamin-Ono equation appearing on pp. 112–113 of [2].

This completes the proof of the Theorem.
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