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Abstract

We prove well-posedness and ill-posedness results for two related nonlocal nonlinear
Schrödinger equations on the line: the Gabitov-Turitsyn or dispersion-managed non-
linear Schrödinger equation, and a one-dimensional version of the continuous resonant
equation derived by Faou, Germain, and Hani as the weakly nonlinear large box limit
of the mass-critical nonlinear Schrödinger equation. It is shown that both equations
are well-posed in Sobolev spaces Hr for all r ≥ 0, and the latter equation is ill-posed
in Hr for all r < 0, in the sense that solutions cannot depend uniformly continuously
on the initial data.

1 Introduction
In this paper we prove well-posedness and ill-posedness results for the initial-value problem
on the real line for the dispersion-managed nonlinear Schrödinger (DMNLS) equation

iut + αuxx +

∫ 1

0

g(s) T−1(s)
[
|T (s)[u]|2T (s)[u]

]
ds = 0 (1.1)

and the one-dimensional continuous resonant (1DCR) equation

iut +

∫ ∞

−∞
U−1(s)

[
|U(s)[u]|4U(s)[u]

]
ds = 0. (1.2)

posed for complex-valued functions u(x, t) defined for x ∈ R and t ≥ 0. In equation (1.1), α
is a real constant; g : [0, 1] → R is a bounded measurable function; and the operator T (s)
is the Fourier multiplier operator T (s) = eiD(s)∂2

x , where D : [0, 1] → R is an absolutely
continuous function. In equation (1.2), U(s) is the Fourier multiplier U(s) = eis∂

2
x , defined

for all s ∈ R. (See (2.1) and (2.4) below for explicit definitions.)
The DMNLS equation (1.1) was derived by Gabitov and Turitsyn [GT] as a model for the

propagation of weakly nonlinear, quasi-monochromatic electromagnetic pulses in an optical
fiber whose dispersive properties alternate between strongly positive and strongly negative,
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and have mean value near zero. For a derivation of (1.1) from Maxwell’s equations, the
reader may consult chapter 10 of [A].

Equation (1.2) is a one-dimensional analogue of the continuous resonant equation, an
equation which was derived in [FGH] as a model for the behavior of solutions of the cubic
nonlinear Schrödinger equation on the two-dimensional torus in the weakly nonlinear, large-
box limit. As is detailed in [FGH], the long-time asymptotics of small-amplitude solutions of
the nonlinear Schrödinger equation on the torus is governed in certain parameter regimes by
nonlinear resonances between their Fourier modes, as opposed to the situation in Euclidean
space, where small-amplitude solutions scatter linearly. In fact, it is proved in [FGH] that
the discrete Fourier modes of a small-amplitude solution of the cubic nonlinear Schrödinger
equation on the two-dimensional torus [0, L]× [0, L] can be well approximated, in the limit as
L → ∞, by the Fourier transform of a solution of the continuous resonant equation on R2. At
least formally, (1.2) can be derived as a one-dimensional analogue of the continuous resonant
equation, governing the limiting behavior of periodic solutions of the one-dimensional quintic
nonlinear Schrödinger equation

iut + αuxx + |u|4u = 0,

in the limit as the amplitude of the solutions tends to zero and the period of the solutions
tends to infinity. (Note that the quintic nonlinear Schrödinger equation is mass-critical
in one dimension, just as the cubic nonlinear Schrödinger equation is mass-critical in two
dimensions.) Like the two-dimensional continuous resonant equation, (1.2) is of Hamiltonian
form and appears to have a rich mathematical structure (see for instance the discussion of
its standing-wave solutions in [HZ]).

In Theorems 2.3, 2.4, and 2.6 below, we prove that the DMNLS and 1DCR equations
are globally well-posed in the L2-based Sobolev spaces Hr for all r ≥ 0, and that the 1DCR
equation is ill-posed in Hr for all r < 0, at least in that the sense that a data-to-solution map
cannot be defined on Hr which is uniformly continuous on every bounded set in Hr. The ill-
posedness result is new. As for the well-posedness results, most of what they contain already
appears in the literature, except that a proof of well-posedness for DMNLS in fractional
Sobolev spaces Hr, r > 0, does not seem to have been given before for the general dispersion
profiles D(s) considered here. Still we thought it useful to include all the results in one
unified exposition.

The results of this paper can be compared with existing well-posedness and ill-posedness
results for the nonlinear Schrödinger equation

iut + αuxx + |u|pu = 0, (1.3)

with α ̸= 0. The natural choices of p to compare with (1.1) and (1.2) are p = 2 and p = 4.
In the case when p = 2, equation (1.3) is also globally well-posed in Hr for all r ≥ 0, in the
sense that all the conclusions of Theorem 2.3 below hold for (1.3). In the mass-critical case
when p = 4, local well-posedness holds in Hr for all r ≥ 0, and solutions exist globally in L2

for initial data with sufficiently small L2 norm, but there exist solutions with initial data in
H1 which blow up in H1 norm in finite time. (See chapters 4 and 6 of [C] for more details
and further references). On the other hand, analogues of the ill-posedness result in Theorem
2.6 have been proved in spaces Hr for −1/2 < r < 0 for the case p = 2 in [KPV], and in L2

for the case p = 4 in [BKPSV].
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To prove our well-posedness result for the DMNLS equation, we show below in Lemma
3.7 that the nonlinear term Q(u) in (1.1), defined by

Q(u) =

∫ 1

0

g(s) T−1(s)
[
|T (s)[u]|2T (s)[u]

]
ds, (1.4)

satisfies the estimate
∥Q(u)∥Hr ≤ C∥u∥Hr∥u∥2L2 (1.5)

for every r ≥ 0, provided that D(s) is absolutely continuous with derivative that is piecewise
of one sign and bounded away from zero. Well-posedness then follows from the estimate
(1.5) by standard arguments. We note that in the case r = 0 this estimate already appears
in [HL], and for the case r = 0 and D(s) = s was proved even earlier by Kunze in [Ku].

Note that whereas the NLS equation (1.3) is obviously ill-posed in the case when α = 0,
the DMNLS equation (1.1) is by contrast well-posed in this case. This is of particular interest
in light of the remarkable fact that, when α = 0, the DMNLS equation has stable solitary-
wave solutions ([Ku], see also [KMZ] and [HL]). In fact, to complete the proof of stability,
Hundertmark et al. have already observed in [HKS] that the DMNLS equation is globally
well-posed in L2 when α = 0.

For the 1DCR equation (1.2), a similar estimate to (1.5) holds, from which well-posedness
again follows by standard arguments. Indeed, for the two-dimensional version of this equa-
tion, global well-posedness in Hr(R2) for all r ≥ 0 was already proved by this procedure in
[FGH].

To prove our ill-posedness result for the 1DCR equation, we follow the basic idea of the
ill-posedness proofs in [KPV] and [BKPSV], which is to choose two different initial data from
a certain family of special solutions of the equation which are close in Hr but which give rise
to solutions whose velocities differ by a large amount, and which therefore separate in an
arbitrarily small amount of time. Since special solutions of 1DCR with different translational
velocities are not available, we use solutions with different phase velocities instead. On the
other hand, since the 1DCR equation has a large collection of stationary-wave solutions to
work with, we are able to obtain an ill-posedness result in Hr for every negative value of
r; whereas the ill-posedness proofs for (1.3) in [KPV] and [BKPSV] required r > −1/2 for
p = 2 and r = 0 for p = 4.

We remark that the technique used here and in [KPV] to obtain ill-posedness results
does not apply to (1.1), because equation (1.1) does not enjoy the same dilation symmetry
that equations (1.3) and (1.2) do. As far as we know, it remains an open question whether
equation (1.1) is ill-posed in Hr for any r < 0.

Some of the well-posedness results proved here have appeared as part of the second
author’s Ph.D. thesis [K].

Notation. The set of natural numbers {1, 2, 3, · · · } and the set of all integers are written N
and Z, respectively. The set of all real numbers is denoted by R.

For any measurable function f on I ⊆ R and any p ∈ [1,∞), we define

|f |Lp(I) =

(∫
I

|f(x)|p dx

) 1
p

,
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and Lp(I) denotes the space of all f for which ∥f∥Lp(I) is finite. The space L∞(I) is defined
as the space of all measurable functions f on I such that

|f |∞ = ess supx∈I |f (x)|

is finite. In case I = R, we use the abbreviation Lp for Lp(R).
For f, g ∈ L2 we define the L2 inner product of f and g by

⟨f, g⟩ =
∫ ∞

−∞
f(x)g(x) dx,

where the bar denotes the complex conjugate.
If f(x, y) is a measurable function defined for (x, y) ∈ I × J ⊂ R ×R, and 1 ≤ p ≤ ∞

and 1 ≤ q ≤ ∞, we can, for each fixed y, view f(x, y) as a function gy of x. In other words,
we define gy(x) = f(x, y). We then define h as a function of y by h(y) = ∥gy∥Lp(I), and
define

∥f∥Lq
y(J,L

p
x(I))

= ∥h∥Lq(J).

Thus, for example, when p ∈ [1,∞) and q ∈ [1,∞) we have

∥f∥Lq
y(J,L

p
x(I))

=

(∫
J

(∫
I

|f(x, y)|p dx

) q
p

dy

) 1
q

.

We define Lq
y(J, L

p
x(I)) to be the space of all f for which ∥f∥Lq

y(J,L
p
x(I)) is finite. In case

either I or J is all of R, we omit the reference to I or J . Thus, for example, we refer to
Lq
y(J, L

p
x(R)) as Lq

y(J, L
p
x), and to Lq

y(R, Lp
x(R)) as just Lq

y(L
p
x).

The Fourier transform Ff(ξ) of an integrable function f(x) on R is defined for ξ ∈ R by

Ff(ξ) =

∫ ∞

−∞
e−iξxf (x) dx,

and its inverse is given by

F−1F (x) =
1

2π

∫ ∞

−∞
eiξxF (ξ) dξ.

In the usual way, one can define the Fourier transform and inverse Fourier transform of any
tempered distribution in such a way that it agrees with the above definition on L1.

For any tempered distribution f on R whose Fourier transform F is a function, and any
r ∈ R, we define

∥f∥Hr =

(∫ ∞

−∞
(1 + |ξ|2)r/2|Ff(ξ)|2 dξ

)1/2

and Hr denotes the Sobolev space of all such tempered distributions f for which ∥f∥Hr is
finite. For r ≥ 0, the elements of Hr are functions, and in fact Hr ⊆ H0 = L2.

We define S(R) to be the Schwartz space of all complex-valued C∞ functions on R such
that for every nonnegative integer m and every multi-index α,

sup
x∈R

(1 + |x|2)
m
2 |Dαu(x)| < ∞
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If E is a subset of R then C∞
0 (E) denotes the space of infinitely differentiable functions

with compact support in E.
If X is any Banach space with norm ∥ · ∥X , and [a, b] ⊆ R, we define C ([a, b], X) to be

the Banach space of all continuous maps u : [a, b] → X with norm

∥u∥C([a,b],X) = sup
t∈[a,b]

∥u(t)∥X .

We define C1([a, b], X) to be the space of all maps u : [a, b] → X which are differentiable
and have continuous derivatives on [a, b].

In general, if u(x, t) is a function of two real variables x and t, we will view u as a map
with domain is some interval of values of t, taking values u(t) which are functions of the
variable x.

In what follows we will often use C, C1, and C2 to stand for various constants, whose
value may differ from one line to the next.

2 Statement of main results
We explain the sense in which we interpret the concept of a solution of equation (1.1) or (1.2)
in a space, such as L2, of functions which are not necessarily smooth or even differentiable.
For brevity we will refer only to (1.1) in the remarks which follow, but it will be clear that
the discussion applies as well, with obvious changes, to (1.2).

Let D(s) be a real-valued, measurable function of s ∈ [0, 1]. Then D(s) is well-defined
as a real number, at least for almost every s in [0, 1]. For each such s, we define T (s) as on
operator on L2 by setting

F (T (s)[f ]) (ξ) = exp (−iξ2D(s)) · Ff(ξ), (2.1)

for all f ∈ L2. More generally, (2.1) can be used to define T (s)f for all f ∈ Hr, for every
real number r. Moreover, since the multiplier exp(−iξ2D(s)) has absolute value 1 for all
ξ ∈ R, it follows easily from Plancherel’s theorem that T (s) is unitary on Hr: that is,

∥T (s)f∥Hr = ∥f∥Hr (2.2)

for all f ∈ Hr.
We observe that if u is a solution of (1.1) which is sufficiently well-behaved, say u ∈

C(R, H1), then by Duhamel’s principle, u will satisfy the equation

u(t) = U(αt)u0 + i

∫ t

0

U(α(t− t′))Q(u(t′)) dt′, (2.3)

where Q(u) is as defined in (1.4), and U(t) is the group of solution operators for the linear
Schrödinger equation ivt + vxx = 0. That is, for each t ∈ R, we define the unitary operator
U(t) : L2 → L2 by setting

F(U(t)f)(ξ) = exp(−iξ2t)Ff(ξ). (2.4)

Next we would like to use (2.3) to define a class of solutions of (1.1) which are not
necessarily regular enough to lie in H1.
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Definition 2.1. Suppose r ≥ 0, u0 ∈ Hr, and T1 and T2 are real numbers with T1 < T2. We
say that u(x, t) ∈ C([T1, T2], H

r) is a strong solution of (1.1) with initial data u0 if

1. for every t ∈ [T1, T2], the map which takes s ∈ [0, 1] to

B(s, t) := g(s) T−1(s)
[
|T (s)[u(t)]|2 T (s)[u(t)]

]
(2.5)

defines a function in L1([0, 1], Hr);

2. the map which takes t ∈ [T1, T2] to

Q(u(t)) :=

∫ 1

0

B(s, t) ds (2.6)

defines a function in C([T1, T2], H
r); and

3. the identity

u(t) = U(α(t− T1))u0 + i

∫ t

T1

U(α(t− t′))[Q(u(t′))] dt′

holds in the sense of equality between elements of C([T1, T2], H
r).

It is easy to see (cf. section 1.6 of [C], for example) that strong solutions can be char-
acterized as solutions of (1.1), viewed as a differential equation, with a certain amount of
regularity. That is, we have the following proposition.

Proposition 2.2. Suppose r ≥ 0 and u0 ∈ Hr. Then u(x, t) is a strong solution of (1.1)
with initial data u0 if and only if u ∈ C([T1, T2], H

r) ∩ C1([T1, T2], H
r−2), u(T1) = u0, and

u(t) satisfies

i
du

dt
+ α(u(t))xx +Q(u(t)) = 0, (2.7)

viewed as a differential equation in Hr−2.

To obtain a well-posedness result in Hr for all r ≥ 0, we will need to make an additional
regularity assumption on the function D(s) appearing in the definition of the operator T (s).

Assumption A. The function D(s) is absolutely continuous on [0, 1]; and the integrable
function D′(s) is piecewise of one sign and is bounded away from zero on [0, 1]. In other
words, there exist δ > 0 and numbers s0, s1, . . . , sn, with 0 = s0 < s1 < s2 < · · · < sn−1 <
sn = 1, such that for all j ∈ {1, · · · , n}, either D′(s) ≥ δ for almost every s ∈ [sj−1, sj], or
D′(s) ≤ −δ for almost every s ∈ [sj−1, sj].

An important role in the theory of the initial-value problem for (1.1) is played by the
functional

P (u) =

∫ ∞

−∞
|u|2 dx

and the energy functional

E(u) =

∫ ∞

−∞

(
α |ux|2 −

1

2

∫ 1

0

g(s) |T (s)u|4 ds

)
dx.
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Theorem 2.3. Suppose α ∈ R, g(s) is bounded and measurable on [0, 1], and D(s) satisfies
Assumption A.

If r ≥ 0 and u0 ∈ Hr, then for every M > 0, equation (1.1) has a unique strong solution
u ∈ C([0,M ], Hr) with initial data u0. The map u0 7→ u is a locally Lipschitz map from Hr

to C([0,M ], Hr). The quantity P (u(t)) is independent of t for t ≥ 0; and in case α = 0, we
can say further that E(u(t)) is independent of t for t ≥ 0.

Also, for every pair of exponents (q, p) which is admissible in the sense of Definition
3.1 below, and every choice of initial data u0 ∈ L2, the corresponding solution u belongs to
Lq
t ([0,M ], Lp

x) for every M > 0.

Remarks.
(1) Because a strong solution u(x, t) remains a strong solution when transformed to

u(x, t + T ), we lose no generality by considering solutions with initial data at t = 0. Also,
since u(x,−t) is a strong solution whenever u(x, t) is, the above result also implies well-
posedness backwards in time.

(2) For r > 1/2, global well-posedness properties in Hr may be proved by a standard
contraction-mapping argument, using the fact that Hr is an algebra. In this case, it is enough
to assume only that D(s) is measurable and g(s) is measurable and bounded on [0, 1] (see
[K] for details).

(3) In case α = 0, a well-posedness result is also available in L∞ ∩ L2 (cf. Theorem 2.11
of [K]).

(4) In the proof of Theorem 2.3, the fact that P (u(t)) is conserved is crucial, whereas
the fact that E(u(t)) is conserved is not needed. However, the fact that E(u(t)) is conserved
when α = 0 is important for the theory of stability of solitary waves, so we include it here.

For the 1DCR equation (1.2), one has a similar definition of strong solution, in which the
obvious changes are made in definitions (2.5) and (2.6), and a similar well-posedness result.
Define the energy functional E2 for (1.2) by

E2(u) =

∫ ∞

−∞

∫ ∞

−∞
|U(s)u|6 ds dx. (2.8)

Theorem 2.4. If r ≥ 0 and u0 ∈ Hr, then for every M > 0, equation (1.2) has a unique
strong solution u ∈ C([0,M ], Hr) with initial data u0. The map u0 7→ u is a locally Lipschitz
map from Hr to C([0,M ], Hr). The quantities P (u(t)) and E2(u(t)) are independent of t
for t ≥ 0.

Also, for every pair of exponents (q, p) which is admissible in the sense of Definition
3.1 below, and every choice of initial data u0 ∈ L2, the corresponding solution u belongs to
Lq
t ([0,M ], Lp

x) for every M > 0.

We will now state a result showing that the condition r ≥ 0 in Theorem 2.4 is sharp. Let
us denote the nonlinear term in (1.2) by

Q2(u) =

∫ ∞

−∞
U(s)−1

[
|U(s)[u]|4U(s)[u]

]
ds. (2.9)

For every ω > 0, every β > 0, and every N ∈ R, equation (1.2) has solutions of the form

u(x, t) = βωeiβ
4ω2teiNxφ(ωx), (2.10)
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where φ(x) is a solution of
Q2(φ) = φ. (2.11)

Concerning the existence of solutions of (2.11), we have the following.

Proposition 2.5. For every b > 0 and every x0 ∈ R and θ ∈ [0, 2π], the function

φ(x) =

(
4b
√
3

π

)1/4

e−b(x−x0)2+iθx (2.12)

is a solution of (2.11).

Proof. According to Theorem 1.5 of [HZ], every function of the form g(x) = Ae−b(x−x0)2 with
A ∈ C and b > 0 is a maximizer for the functional

S(f) =
∥U(t)f∥L6

t (L
6
x)

∥f∥L2

over all functions f ∈ L2. Therefore g is a stationary point of S; that is, ∇S(g) = 0, which
implies that

Q2(g) = λg (2.13)

for some λ ∈ R. Taking the L2 inner product of (2.13) with g, we obtain that

⟨Q2(g), g⟩ = λ∥g∥2L2 = λ|A|2
√

π

2b
. (2.14)

On the other hand, from Theorem 1.3(a) in [HZ] we have that

⟨Q2(g), g⟩ = E2(g)

= |A|6 1

2
√
3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−2b(x2

1+x2
2+x2

3) dx1 dx2 dx3

= |A|6 1

2
√
3

( π

2b

)3/2
.

(2.15)

Combining (2.14) and (2.15), we find that if A =
(
4b
√
3/π
)1/4

eiθx, then λ = 1. Since g = ϕ
in this case, (2.13) implies (2.11).

Remark. All the solutions of (2.11) given in (2.12) have the same L2 norm: namely,
∥φ∥L2 = 121/8. It is known (cf. [HZ]) that the functions given in (2.12) represent all the
solutions of (2.11) which are minimizers of −S(f), the so-called ground state solutions of
(2.11). An interesting question is whether other solutions of (2.11) exist besides these ground
states.

Theorem 2.6. Suppose r < 0, and M > 0. Let φ be any of the solutions of (2.11) given
in (2.12). Then for every δ > 0, there exist two solutions u(x, t) and v(x, t) of (1.2) in
C([0,M ], Hr) for which

∥u(x, 0)∥Hr ≤ 2∥φ∥L2 and ∥v(x, 0)∥Hr ≤ 2∥φ∥L2 , (2.16)
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∥u(x, 0)− v(x, 0)∥Hr < δ, (2.17)

and
∥u(x,M)− v(x,M)∥Hr ≥ 2r−2∥φ∥L2 . (2.18)

Remark. In fact, the only properties of φ that we need to prove Theorem 2.6, besides that
it is a solution of (2.11), are that |ξ|2Fφ(ξ) is bounded for ξ ∈ R and

∫∞
−∞ |ξ| |(Fφ)′(ξ)|2 dξ

is finite. Note that these conditions are satisfied by the solutions φ given in (2.12), for which
we have that Fφ(ξ) = (4π

√
3/b)1/4e−i(ξ−θ)2/4b−i(ξ−θ)x0 .

Remark. If we denote by B(R) the ball of radius R centered at the origin in Hr, it follows
from Proposition 2.5 and Theorem 2.6 that no uniformly continuous map taking initial data
to solutions of (1.2) can be defined from B(2(121/8)) into C([0,M ], Hr). We do not know,
however, whether there exists some smaller ball B(R) of positive radius on which such a
uniformly continuous solution map can be defined.

3 Strichartz and Sobolev estimates
First we recall some well-known Strichartz estimates for the Schrödinger operators U(t).

Definition 3.1. We say that (q, p) is an admissible pair of exponents if 2 ≤ p ≤ ∞, 4 ≤
q ≤ ∞, and

2

q
=

1

2
− 1

p
.

Lemma 3.2. Suppose (q, p) is an admissible pair of exponents. Then there exists C > 0
such that for all u ∈ L2, U(t)u belongs to Lq

t (L
p
x) and

∥U(t)u∥Lq
t (L

p
x) ≤ C∥u∥L2 .

Moreover, U(t)u ∈ C(R, L2). More generally, if u ∈ Hr for some r ∈ R, then U(t)u ∈
C(R, Hr), and for all t ∈ R,

∥U(t)u∥Hr = ∥u∥Hr . (3.1)

Lemma 3.3. Suppose (q, p) and (γ, ρ) are two admissible pairs of exponents, and let γ′ and
ρ′ be the dual exponents to γ and ρ: i.e., γ′ = γ/(γ− 1) and ρ′ = ρ/(ρ− 1). Suppose M > 0.
Then for all f(x, t) ∈ Lγ′

t ([0,M ], Lρ′
x ), the function

v(t) =

∫ t

0

U(t− t′)[f(t′)] dt′

belongs to Lq
t ([0,M ], Lp

x), and

∥v∥Lq
t ([0,M ],Lp

x) ≤ C∥f∥
Lγ′
t ([0,M ],Lρ′

x )
,

where C > 0 is a constant which is independent of M .
Moreover, if f ∈ C([0,M ], Hr) for some r ∈ R, then v ∈ C([0,M ], Hr).
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For proofs of Lemmas 3.2 and 3.3 the reader may consult, for example, Section 2.3 of [C].
Next, we observe that the Strichartz estimates in Lemma 3.2 also hold for the semigroup

T (s), provided Assumption A holds. This fact can be viewed as an instance of the general
Strichartz estimates proved in [KT]; for a similar result see also Lemma 2.5 of [ASS]. For
completeness we give the details of the proof here.

Lemma 3.4. Suppose D(s) satisfies Assumption A, and suppose (q, p) is an admissible pair
of exponents. Then there exists C > 0 such that for all u ∈ L2, we have that T (s)u(x)
belongs to Lq

s([0, 1], L
p
x), and

∥T (s)u∥Lq
s([0,1],L

p
x) ≤ C∥u∥L2 . (3.2)

Moreover, T (s)u ∈ C([0, 1], L2). More generally, if u ∈ Hr for some r ∈ R, then T (s)u ∈
C([0, 1], Hr), and for all s ∈ [0, 1],

∥T (s)u∥Hr = ∥u∥Hr .

Proof. Note first that since S(R) is dense in L2(R), it is enough to prove the result for
u ∈ S(R). In this case, T (s)u(x) is a continuous function of (s, x) ∈ [0, 1]×R, and therefore
measurable on [0, 1]×R. Hence we need only prove the estimate (3.2).

Recall (cf. Lemma 2.2.4 of [C], or sections 1.3 and 4.1 of [LP]) that the linear Schrödinger
solution operator U(t) can be represented as a convolution operator: for every t > 0 and
every ϕ ∈ S(R), one has

U(t)ϕ(x) =
1

2π

1√
4πit

∫ ∞

−∞
exp

[
−i

(
(x− y)2

4t

)]
ϕ(y) dy, (3.3)

where we choose the branch of the complex square root so that
√
4πit has positive imaginary

part.
Next, observe that by writing

∥T (s)u∥Lq
s((0,1),L

p
x) =

(
n∑

j=1

∫ sj

sj−1

∥T (s)u∥qLp ds

)1/q

≤ C

n∑
j=1

∥T (s)u∥Lq
s((sj−1,sj),L

p
x),

and taking Assumption A into account, one sees that it is enough to prove that the estimate
(3.2) holds when [0, 1] is replaced by an arbitrary finite interval [a, b], under the assumption
that D(s) is absolutely continuous on [a, b] and

either D′(s) ≥ δ a.e. on [a, b], or D′(s) ≤ −δ a.e. on [a, b]. (3.4)

Let q′ and p′ be the dual exponents of q and p, with 1
q′
+ 1

q
= 1 and 1

p′
+ 1

p
= 1, and let

B = {ϕ ∈ Lq′
s ((a, b), L

p′
x ) : ∥ϕ∥Lq′

s ((a,b),Lp′
x )

≤ 1}. From duality we have that

∥T (s)u∥Lq
s((a,b),L

p
x) = sup

{∫ b

a

⟨T (s)u, ϕ(s)⟩ ds : ϕ ∈ B

}
. (3.5)
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In fact, by a density argument we can take the supremum in (3.5) to be over all ϕ ∈ B such
that ϕ(s) ∈ S(R) for all s ∈ [0, 1].

Now ∫ b

a

⟨T (s)u, ϕ(s)⟩ ds =

∫ b

a

⟨u, T ∗(s)ϕ(s)⟩ ds

=

⟨
u,

∫ b

a

T ∗(s)ϕ(s) ds

⟩
≤ ∥u∥L2

∥∥∥∥∫ b

a

T ∗(s)ϕ(s) ds

∥∥∥∥
L2

,

where T ∗ (s) = T−1 (s) is the adjoint of the unitary operator T (s) on L2. So from (3.5) it
follows that to prove the theorem, it is enough to show that there exists C > 0 so that∥∥∥∥∫ b

a

T ∗(s)ϕ(s) ds

∥∥∥∥
L2

≤ C (3.6)

for all ϕ ∈ B such that ϕ(s) ∈ S(R) for all s ∈ [0, 1].
We have ∥∥∥∥∫ b

a

T ∗(s)ϕ(s) ds

∥∥∥∥2
L2

=

⟨∫ b

a

T ∗(s)ϕ(s) ds,

∫ b

a

T ∗(t)ϕ(t) dt

⟩
=

∫ b

a

⟨ϕ(t), θϕ(s)⟩ ds,

where

θϕ(s) =

∫ b

a

T (s)T ∗(t)ϕ(t) dt.

From two applications of Hölder’s Inequality it follows that∫ b

a

⟨ϕ(t), θϕ(s)⟩ ds ≤
∫ b

a

∥ϕ(s)∥Lp′∥θϕ(s)∥Lp ds

≤ ∥ϕ∥
Lq′
s ((a,b),Lp′

x )
∥θϕ∥Lq

s((a,b),L
p
x) ≤ ∥θϕ∥Lq

s((a,b),L
p
x),

so to prove (3.6) it is enough to obtain a uniform bound on ∥θϕ∥Lq
s((a,b),L

p
x).

For each s ∈ (0, 1) we have

∥θϕ(s)∥Lp =

∥∥∥∥∫ b

a

T (s)T ∗(t)ϕ(t) dt

∥∥∥∥
Lp

≤
∫ b

a

∥T (s)T ∗(t)ϕ(t)∥Lp dt.

From the definition of T (s) we see that

F (T (s)T ∗(t)ϕ(t)) = exp
(
−iω2(D(s)−D(t))

)
Fϕ(t),

so
T (s)T ∗(t)ϕ(t) = U(D(s)−D(t))ϕ(t),

11



and hence from (3.3) we obtain, for each s, t ∈ [0, 1],

(T (s)T ∗(t)ϕ(t)) (x) =

=
1

2π

1√
4πi(D(s)−D(t))

∫ ∞

−∞
exp

(
−i|x− y|2

4(D(s)−D(t))

)
ϕ(t, y)dy.

Taking the supremum over x ∈ R gives

∥T (s)T ∗(t)ϕ(t)∥L∞ ≤ C∥ϕ(t)∥L1

|D(s)−D(t)|1/2
. (3.7)

On the other hand, since T is unitary, we have

∥T (s)T ∗(t)ϕ(t)∥L2 = ∥ϕ(t)∥L2 . (3.8)

From (3.7), (3.8) and the Riesz-Thorin Interpolation Theorem (see, for example, Theorem
2.1 of [LP]), we get

∥T (s)T ∗(t)ϕ(t)∥Lp ≤

(
C√

|D(s)−D(t)|

)1−(2/p)

C2/p∥ϕ(t)∥Lp′ ,

for some constant C independent of ϕ. So

∥θϕ(s)∥Lp ≤ C

∫ b

a

∥ϕ(t)∥Lp′

|D(s)−D(t)|(1/2)−(1/p)
dt.

But from our assumption (3.4) on D(s), it follows that

|D(s)−D(t)| ≥ δ|s− t|.

Therefore
∥θϕ(s)∥Lp ≤ Cδ(1/p)−(1/2) w(s), (3.9)

where

w(s) =

∫ b

a

∥ϕ(t)∥Lp′

|s− t|(1/2)−(1/p)
dt.

Now, in case p > 2, we define

β =
1

2
+

1

p
∈ (0, 1),

and observe that since (q, p) is an admissible pair, we have that

1

q
=

1

q′
− β.

Therefore, the Hardy-Littlewood-Sobolev inequality (see, e.g., Theorem 2.6 of [LP]) for frac-
tional integrals of order β, when applied to the function w(s), yields the estimate

∥w∥Lq(a,b) ≤ C

(∫ b

a

∥ϕ(s)∥q
′

Lp′ ds

)1/q′

= C∥ϕ∥
Lq′
s ((a,b),Lp′

x )
= C.
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Together with (3.9), this gives the desired bound on ∥θϕ∥Lq
s((a,b),L

p
x), and therefore proves

(3.2) in the case when p > 2.
To prove (3.2) in the remaining case, when p = 2 and q = ∞, observe first that if, say,

u ∈ S(R), then since

T (s)u(x) =
1

2π

∫ ∞

−∞
eiωxe−iω2D(s)Fu(ω) dω

and D(s) is continuous on [0, 1], it follows from the dominated convergence theorem that
T (s)u(x) is a continuous function of (x, s) on R × [0, 1], and lies in C([0, 1], L2). Also the
estimate (3.2) for p = 2 and q = ∞ is a special case of (2.2). Then, for general u ∈ L2,
by approximating u by functions in S(R) and passing to the limit we can conclude that
T (s)u ∈ C([0, 1], L2) and (3.2) still holds.

To prove the final assertions of the Lemma concerning Hr, one simply observes that a
tempered distribution u is in Hr if and only if (1+∂2

x)
r/2u ∈ L2, where F((1+∂2

x)
r/2u)(ω) =

(1 + ω2)r/2Fu(ω). The desired results then follow from what has already been proved and
the fact that T (s) commutes with (1 + ∂2

x)
r/2.

For the next estimate we will need to use the following product estimate for Sobolev
norms. For a proof the reader may consult, for example, Lemma A.8 of [T].

Lemma 3.5. Suppose r ≥ 0. Then there exists C > 0 such that for all u, v ∈ Hr ∩ L∞,

∥uv∥Hr ≤ C (∥u∥L∞∥v∥Hr + ∥v∥L∞∥u∥Hr) .

The following multilinear estimate for Q was already proved in [Ku] in the case where
D(s) = s and r = 0. See also [HL], where it is proved for r = 0 under even more general
assumptions on D(s) than the ones used here.

Lemma 3.6. Suppose r ≥ 0. Suppose u1, u2, u3 ∈ Hr, and for s ∈ [0, 1] define

B(s) := g(s) T−1(s)
[
T (s)u1 · T (s)u2 · T (s)u3

]
.

Then B(s) ∈ L1([0, 1], Hr), and if we define

Q(u1, u2, u3) :=

∫ 1

0

B(s)ds, (3.10)

then we have

∥Q(u1, u2, u3)∥Hr ≤ C(∥u1∥Hr∥u2∥L2∥u3∥L2 + ∥u1∥L2∥u2∥Hr∥u3∥L2

+ ∥u1∥L2∥u2∥L2∥u3∥Hr),
(3.11)

with C independent of u1, u2, and u3.

Proof. We may assume that ui ∈ S(R) for each i, so that all functions involved are mea-
surable (even continuous). For each i, we have by Lemma 3.4 that T (s)ui ∈ L4

s([0, 1], L
∞
x ),

with
∥ui∥L4

s([0,1],L
∞
x ) ≤ C∥ui∥L2 .
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In particular T (s)ui ∈ L∞ for almost every s ∈ [0, 1]. Also, by Lemma 3.4, T (s)ui ∈ Hr for
all s ∈ [0, 1]. Therefore we may apply Lemma 3.5 to the product T (s)u1 · T (s)u2 · T (s)u3 for
almost every s ∈ [0, 1]. There results the estimate

∥T (s)u1 · T (s)u2 · T (s)u3∥Hr ≤ C(∥T (s)u1∥Hr∥T (s)u2∥L∞∥T (s)u3∥L∞

+ ∥T (s)u1∥L∞∥T (s)u2∥Hr∥T (s)u3∥L∞

+ ∥T (s)u1∥L∞∥T (s)u2∥L∞∥T (s)u3∥Hr).

Since g(s) is bounded and T−1(s) is a unitary operator on Hr, it follows that

∥Q(u1, u2, u3)∥Hr ≤ C

(∫ 1

0

∥T (s)u1∥Hr∥T (s)u2∥L∞∥T (s)u3∥L∞ ds

+

∫ 1

0

∥T (s)u1∥L∞∥T (s)u2∥Hr∥T (s)u3∥L∞ ds

+

∫ 1

0

∥T (s)u1∥L∞∥T (s)u2∥L∞∥T (s)u3∥Hr ds

)
.

(3.12)

Using Lemma 3.4 and Holder’s inequality, we have, for the first integral on the right-hand
side of (3.12), the estimate∫ 1

0

∥T (s)u1∥Hr∥T (s)u2∥L∞∥T (s)u3∥L∞ ds

≤ C∥u1∥Hr∥T (s)u2∥L4
s([0,1],L

∞
x )∥T (s)u3∥L4

s([0,1],L
∞
x )

≤ C∥u1∥Hr∥u2∥L2∥u3∥L2 ;

and similar estimates hold for the other two integrals in (3.12).

Lemma 3.7. Suppose r ≥ 0. Let Q(u1, u2, u3) be as defined in (3.10), and for u ∈ Hr,
define

Q(u) := Q(u, u, u) =

∫ 1

0

g(s) T−1(s)
[
|T (s)u|2 T (s)u

]
ds.

For all u, v ∈ Hr we have
∥Q(u)∥Hr ≤ C∥u∥Hr∥u∥2L2 (3.13)

and

∥Q(u)−Q(v)∥Hr ≤ C∥u− v∥Hr max(∥u∥L2 , ∥v∥L2)max(∥u∥Hr , ∥v∥Hr) (3.14)

where C is independent of u and v.

Proof. The estimate (3.13) follows immediately from (3.11); and so does (3.14), once we
observe that

Q(u)−Q(v) = Q(u− v, u, u) +Q(v, u− v, u) +Q(v, v, u− v).
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We will need below the following fact concerning E(u).

Lemma 3.8. If u ∈ L2, then

⟨Q(u), u⟩ =
∫ ∞

−∞

∫ 1

0

g(s)|T (s)u|4 ds dx. (3.15)

The functional E(u) is continuous on H1; and, when α = 0, is continuous on L2 as well.

Proof. Equation (3.15) is obtained by writing

⟨Q(u), u⟩ =
∫ ∞

−∞

(∫ 1

0

g(s)T−1(s)
[
|T (s)u|2T (s)u

]
ds

)
u dx

=

∫ 1

0

g(s)
⟨
T−1(s)

[
|T (s)u|2T (s)u

]
, u
⟩
ds

=

∫ 1

0

g(s)
⟨
|T (s)u|2T (s)u, T (s)u

⟩
ds

=

∫ ∞

−∞

∫ 1

0

g(s)|T (s)u|4 ds dx.

Here we have used using Fubini’s theorem, which is justified by Lemma 3.7, and the fact
that T (s) is unitary on L2.

It follows that
E(u) = α∥ux∥2L2 −

1

2
⟨Q(u), u⟩,

for all u ∈ H1; and, when α = 0, we have

E(u) = −1

2
⟨Q(u), u⟩

for all u ∈ L2. The assertions about the continuity of E(u) follow from the fact that for all
u, v ∈ L2 we have, using (3.13) and (3.14),

|⟨Q(u), u⟩ − ⟨Q(v), v⟩| ≤ C (|⟨Q(u)−Q(v), u⟩|+ |⟨Q(v), u− v⟩|)
≤ C∥Q(u)−Q(v)∥L2∥u∥L2 + C∥Q(v)∥L2∥u− v∥L2

≤ C∥u− v∥L2 max
(
∥u∥3L2 + ∥v∥3L2

)
.

Finally we observe that estimates similar to the ones obtained above hold for the nonlinear
term Q2(u) in the 1DCR equation, defined above in (2.9).

Lemma 3.9. Suppose r ≥ 0. Then for all u, v ∈ Hr we have

∥Q2(u)∥Hr ≤ C∥u∥Hr∥u∥4L2 , (3.16)

and

∥Q2(u)−Q2(v)∥Hr ≤ C∥u− v∥Hr max(∥u∥3L2 , ∥v∥3L2)max(∥u∥Hr , ∥v∥Hr); (3.17)
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where C is independent of u and v.
Moreover, for all u ∈ L2, the functional E2(u) defined in (2.8) is given by

E2(u) = ⟨Q2(u), u⟩,

and hence E2 represents a continuous map from L2 to R.

Proof. First observe that taking q = ∞ and p = 4 in Lemma (3.2) gives the estimate

∥U(s)u∥L4(L∞) ≤ C∥u∥L2 (3.18)

for all u ∈ L2. If ui ∈ Hr for i = 1, 2, 3, 4, 5, we define

Q2(u1, u2, u3, u4, u5) :=

:=

∫ ∞

−∞
U−1(s)

[
U(s)u1 · U(s)u2 · U(s)u3 · U(s)u4 · U(s)u5

]
ds,

then arguing as in Lemma (3.6), using (3.18) and Holder’s inequality, we obtain the estimate

∥Q2(u1, u2, u3, u4, u5)∥Hr ≤ C
∑

∥ui1∥Hr∥ui2∥L2∥ui3∥L2∥ui4∥L2∥ui5∥L2 ,

where the sum is over all the permutations (i1, i2, i3, i4, i5) of (1, 2, 3, 4, 5). The estimates
(3.16) and (3.17) then follow as in the proof of Lemma 3.7, and the assertions concerning E2

follow as in the proof of Lemma 3.8.

4 Well-posedness for DMNLS and 1DCR
In this section we prove Theorems 2.3 and 2.4. The proofs proceed by standard arguments
once the estimates in the previous section have been obtained, but for the reader’s conve-
nience we give the argument here in detail.

We denote by BM,a,r the closed ball of radius a centered at the origin in C([0,M ], Hr);
that is,

BM,a,r =
{
u ∈ C([0,M ], Hr) : ∥u∥C([0,M ],Hr) ≤ a

}
.

Lemma 4.1. Suppose r ≥ 0 and K > 0. For every a ∈ [2K,∞), there exists M > 0 such
that if u0 ∈ Hr satisfies ∥u0∥Hr ≤ K, and M ′ ∈ (0,M ], then there is a unique strong solution
of (1.1) in BM ′,a,r with initial data u0.

Proof. Fix u0 ∈ Hr such that ∥u0∥Hr ≤ K. For each M > 0 we claim that we can define
Φ : C([0,M ], Hr) → C([0,M ], Hr) by setting, for u ∈ C([0,M ], Hr) and t ∈ [0,M ],

Φ(u)(t) = U(αt)u0 + i

∫ t

0

U(α(t− t′))[Q(u(t′))] dt′. (4.1)

Indeed, from (3.14) we know that Q(u(t)) ∈ C([0,M ], Hr), and from Lemmas 3.2 and 3.3
it then follows that Φ(u) is well-defined as an element of C([0,M ], Hr). Moreover, for all
t ∈ [0,M ], we have that

∥Φ(u)(t)∥Hr ≤ ∥U(αt)u0∥Hr + C

∫ t

0

∥U(α(t− t′))[Q(u(t′))]∥Hr dt′

≤ ∥u0∥Hr + C

∫ t

0

∥u(t′)∥3Hr dt′,

(4.2)
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where we have used (3.1) and (3.13).
Further, if u, v ∈ C([0,M ], Hr), then using (3.14) we have that, for all t ∈ [0,M ],

∥Φ(u)(t)− Φ(v)(t)∥Hr =

∥∥∥∥∫ t

0

U(α(t− t′))[Q(u)(t′)−Q(v)(t′)] dt′
∥∥∥∥
Hr

≤
∫ t

0

∥Q(u(t′))−Q(v(t′))∥Hr dt′

≤ C

∫ t

0

∥u(t′)− v(t′)∥Hr max(∥u(t′)∥2Hr , ∥v(t′)∥2Hr) dt′.

(4.3)

From (4.2) and (4.3) it follows that if a > 0, then for all u, v ∈ BM,a,r we have

∥Φ(u)∥C([0,M ],Hr) ≤ K + CMa3 (4.4)

and
∥Φ(u)− Φ(v)∥C([0,M ],Hr) ≤ CMa2∥u− v∥C([0,M ],Hr). (4.5)

Now suppose a ≥ 2K, choose M = 1/(2Ca2), and suppose 0 < M ′ ≤ M . For all u, v ∈
BM ′,a,r, we have from (4.4) and (4.5) that

∥Φ(u)∥C([0,M ′],Hr) ≤
a

2
+

a

2
= a

and
∥Φ(u)− Φ(v)∥C([0,M ′],Hr) ≤

1

2
∥u− v∥C([0,M ′],Hr).

Therefore Φ defines a contraction from the closed ball BM ′,a,r into itself, and so it follows
from the Banach contraction mapping theorem that Φ has a unique fixed point in BM ′,a,r.
This fixed point is a strong solution of (1.1) with initial data u0, and since every strong
solution with initial data u0 is also a fixed point of Φ, then there exists a unique strong
solution in BM ′,a,r with initial data u0.

Lemma 4.2. Suppose r ≥ 0 and K > 0, and suppose u0, v0 ∈ Hr with ∥u0∥Hr ≤ K and
∥v0∥Hr ≤ K. Let a = 2K and let M be as defined in the statement of Lemma 4.1, and let
u and v be the unique strong solutions in BM,2K,r with initial data u0 and v0, respectively,
given by Lemma 4.1. Then

∥u− v∥C([0,M ],Hr) ≤ 2∥u0 − v0∥Hr . (4.6)

Proof. Defining Φ on C([0,M ], Hr) by (4.1), we see from the proof of Lemma 4.1 that

∥Φ(u)− Φ(v)∥C([0,M ],Hr) ≤
1

2
∥u− v∥C([0,M ],Hr). (4.7)

Define the map Ψ : C([0,M ], Hr)×Hr → C([0,M ], Hr) by

Ψ(u,w) = U(αt)w + i

∫ t

0

U(α(t− t′))[Q(u(t′))] dt′.
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Then u = Ψ(u, u0) and v = Ψ(v, v0), and so for each t ∈ [0,M ],

∥u(t)−v(t)∥Hr = ∥Ψ(u, u0)(t)−Ψ(v, v0)(t)∥Hr

≤ ∥Ψ(u, u0)(t)−Ψ(v, u0)(t)∥Hr + ∥Ψ(v, u0)(t)−Ψ(v, v0)(t)∥Hr .

But ∥Ψ(v, u0)(t)−Ψ(v, v0)(t)∥Hr = ∥U(αt)[u0−v0]∥Hr = ∥u0−v0∥Hr , and since Ψ(u, u0)(t)−
Ψ(v, u0)(t) = Φ(u)(t) − Φ(v)(t), it follows from (4.7) that ∥Ψ(u, u0)(t) − Ψ(v, u0)(t)∥Hr ≤
1
2
∥u− v∥C([0,M ],Hr). Therefore

∥u(t)− v(t)∥Hr ≤ ∥u0 − v0∥Hr +
1

2
∥u− v∥C([0,M ],Hr),

and since this has been proved for all t ∈ [0,M ], (4.6) follows.

Lemma 4.3. Suppose u0 ∈ L2 and M > 0. Then there cannot be two different strong
solutions of (1.1) in C([0,M ], L2) with initial data u0.

Proof. Suppose u and v are two strong solutions in C([0,M ], L2) with the same initial data
u0, and let

T = sup {t ∈ [0,M ] : u(t′) = v(t′) for all t′ ∈ [0, t]} .

By continuity, we have that u(T ) = v(T ).
We want to show that T = M . If, to the contrary, T < M , then it follows from the

definition of T that for every ϵ ∈ (0,M −T ), there exists t ∈ [T, T + ϵ] such that u(t) ̸= v(t).
Define u1 = u(T ) = v(T ). From Lemma 4.1 we know that if we define a1 = 2∥u1∥L2 , then
there exists M1 > 0 such that for every ϵ ∈ (0,M1], (1.1) has a unique strong solution
in Bϵ,a1,0 with initial data u1. Choose ϵ > 0 so small that ϵ < min(M1,M − T ), and
max (∥u(t)− u1∥L2 , ∥v(t)− u1∥L2) ≤ a1 for all t ∈ [T, T + ϵ]. Then ũ(t) := u(t − T ) and
ṽ(t) := v(t − T ) are two distinct strong solutions in Bϵ,a1,0 with initial data u1, giving a
contradiction. This shows that we must have T = M , and hence u = v in C([0,M ], L2).

For given u0 ∈ Hr, with r ≥ 0, we define M(u0, r) to be the supremum of the set of all
M > 0 such that there exists a strong solution of (1.1) in C([0,M ], Hr) with initial data u0.
From Lemma 4.1 we have that M(u0, r) > 0; and since every strong solution in C([0,M ], Hr)
is also a strong solution in C([0,M ], L2), it follows from Lemma 4.3 that two solutions defined
on different time intervals [0,M1] and [0,M2] must agree on the smaller of the two intervals.
Therefore there is a well-defined function u(x, t) defined for t ∈ [0,M(u0, r)) such that for
every M ∈ (0,M(u0, r)), u is the unique strong solution of (1.1) in C([0,M ], Hr) with
initial data u0. Moreover, if M(u0, r) < ∞, then limt↗M(u0,r) ∥u(t)∥Hr = ∞, for otherwise
we obtain a contradiction by choosing as initial data u(M) with M sufficiently close to
M(u0, r), and using Lemma 4.1 to extend the solution u(t) to a time interval [0,M + ϵ] with
M + ϵ > M(u0, r).

Lemma 4.4. Suppose r ≥ 0 and u0 ∈ Hr. Then M(u0, r) = M(u0, 0).

Proof. By Lemma 4.1, it suffices to show that if 0 < M < M(u0, 0) and u is a strong solution
in C([0,M ], Hr) with initial data u0, then ∥u(t)∥Hr remains bounded for t ∈ [0,M ].
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To see this, observe first that for all t ∈ [0,M ],

∥u(t)∥Hr ≤ ∥U(αt)u0∥Hr +

∫ t

0

∥U(α(t− t′))Q(u(t′))∥Hr dt′

= ∥u0∥Hr +

∫ t

0

∥Q(u(t′))∥Hr dt′

≤ ∥u0∥Hr +

∫ t

0

∥u(t′)∥2L2∥u(t′)∥Hr dt′,

where we have used (3.13). Therefore

∥u(t)∥Hr ≤ ∥u0∥Hr + 3CR2

∫ t

0

∥u(t′)∥Hr dt′,

where R = ∥u∥C([0,M ],L2) < ∞. Then from Gronwall’s inequality it follows that, for all
t ∈ [0,M1],

∥u(t)∥Hr ≤ ∥u0∥Hre3CR2t ≤ ∥u0∥Hre3CR2M1 < ∞,

as desired.

Lemma 4.5. Suppose u0 ∈ H2. Then M(u0, 0) = ∞, and P (u(t)) and E(u(t)) are indepen-
dent of t for t ≥ 0.

Proof. Suppose M < M(u0, 0), so that a strong solution u with initial value u0 exists in
C([0,M ], L2). By Lemma 4.4, u is also a strong solution in C([0,M ], H2), and by Proposition
2.2, we have that u ∈ C1([0,M ], L2) as well.

In particular, it follows that d
dt
P (t) = ⟨ut, u⟩+⟨u, ut⟩ for t ∈ [0,M ]. Now taking the inner

product of (2.7) with u, and subtracting the resulting equation from its complex conjugate,
we obtain that

−i
d

dt
P (u(t)) = α (⟨uxx, u⟩ − ⟨u, uxx⟩) + ⟨Q(u), u⟩ − ⟨u,Q(u)⟩. (4.8)

for all t ∈ [0,M ]. But for all u ∈ H2, we have that ⟨uxx, u⟩ = −⟨ux, ux⟩, which is a real
quantity; and for all u ∈ L2, we have that ⟨Q(u), u⟩ =

∫ 1

0
|T (s)u|4 ds, which is also real.

Therefore, we obtain from (4.8) that d
dt
P (u(t)) = 0.

On the other hand, taking the inner product of (2.7) with ut and adding the result to its
complex conjugate yields

0 = −α (⟨uxx, ut⟩+ ⟨ut, uxx⟩)− (⟨Q(u), ut⟩+ ⟨Q(u), ut⟩) =
d

dt
E(u(t)).

We have shown that P (u(t)) and E(u(t)) are constant for t ∈ [0,M ], for all M < M(u0, 0).
Therefore ∥u(t)∥2L2 = P (u(t)) is constant for 0 ≤ t < M(u0, 0), and as remarked before
Lemma 4.4, this is enough to show that M(u0, 0) = ∞.

Lemma 4.6. Suppose u0 ∈ L2. Then M(u0, 0) = ∞, and P (u(t)) is independent of t for
t ≥ 0. If α = 0, then E(u(t)) is independent of t for t ≥ 0.
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Proof. Choose K > 0 such that K > ∥u0∥L2 , and let MK be the value of M asserted to exist
in Lemmas 4.1 and 4.2 for r = 0 and this value of K, so that whenever u0, v0 ∈ L2 with
∥u0∥L2 ≤ K and ∥v0∥L2 ≤ K, the corresponding strong solutions u and v in C([0,MK ], L

2)
satisfy

∥u− v∥C([0,MK ],L2) ≤ 2∥u0 − v0∥L2 . (4.9)

Let ϕn be a sequence of functions in H2 such that ∥ϕn∥L2 ≤ K for all n, and ϕn → u0

in L2. By Lemma 4.5, for each n there exists a strong solution vn in C([0,MK ], L
2) with

P (vn(t)) = P (ϕn) and E(vn(t)) = E(ϕn) for all t ∈ [0,MK ]. From (4.9) we have that
vn → u in C([0,MK ], L

2). Hence for all t ∈ [0,MK ] we have P (u(t)) = limn→∞ P (vn(t)) =
limn→∞ P (ϕn) = P (u0); and, if α = 0, we also have using Lemma 3.8 that E(u(t)) =
limn→∞E(vn(t)) = limn→∞ E(ϕn) = E(u0).

Now, since we have that ∥u(MK)∥L2 = ∥u0∥L2 < K, we can repeat the argument with
u(MK) as initial data, to obtain a strong solution u ∈ C([0, 2MK ], L

2) with P (u(t)) constant
for t ∈ [0, 2MK ]. Iterating this argument gives that M(u0, 0) = ∞ and P (u(t)) is constant
for all t ≥ 0; moreover, E(u(t)) is constant for t ≥ 0 if α = 0.

Lemma 4.7. For r ≥ 0, the map from initial data to strong solutions in Hr is locally
Lipschitz: for every K > 0 and M > 0, there exists C > 0 such that if u0, v0 ∈ Hr with
∥u0∥Hr ≤ K and ∥v0∥Hr ≤ K, and u and v are strong solutions in C([0,M ], Hr) with initial
data u0 and v0, then

∥u− v∥C([0,M ],Hr) ≤ C∥u0 − v0∥Hr .

Proof. Suppose ∥u0∥Hr ≤ K and ∥v0∥Hr ≤ K, let M be given, and let u and v be the
corresponding strong solutions in C([0,M ], Hr). From Lemma 4.6 we have that ∥u(t)∥L2 ≤ K
and ∥v(t)∥L2 ≤ K for all t. Define R = max(∥u∥C([0,M ],Hr), ∥u∥C([0,M ],Hr)). Then for all
t ∈ [0,M ], we have from (3.14) that

∥u(t)− v(t)∥Hr =

=

∥∥∥∥U(αt)(u0 − v0) +

∫ t

0

U(α(t− t′)) [Q(u(t′))−Q(v(t′))] dt′
∥∥∥∥
Hr

≤ ∥u0 − v0∥Hr +

∫ t

0

∥Q(u(t′))−Q(v(t′))∥Hr dt′

≤ ∥u0 − v0∥Hr + CKR

∫ t

0

∥u(t′)− v(t′)∥Hr dt′.

So from Gronwall’s inequality it follows that

∥u(t)− v(t)∥Hr ≤ eCKRt∥u0 − v0∥Hr ≤ eCKRM∥u0 − v0∥Hr

for all t ∈ [0,M ].

Lemma 4.8. Suppose u0 ∈ L2 and M > 0. Then ∥u∥Lq
t ([0,M ],Lp

x) < ∞ for every admissible
pair of exponents (q, p).
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Proof. From Lemma 3.2, and Lemma 3.3 with (γ, ρ) = (∞, 2) and (γ′, ρ′) = (1, 2), we obtain
the estimate

∥u∥Lq
t ([0,M ],Lp

x) ≤

≤ ∥U(αt)u0∥Lq
t ([0,M ],Lp

x) +

∥∥∥∥∫ t

0

U(α(t− t′))[Q(u(t′)] dt′
∥∥∥∥
Lq
t ([0,M ],Lp

x)

≤ C∥u0∥L2 + C∥Q(u(t))∥L1
t ([0,M ],L2

x)
.

But, by (1.5),

∥Q(u(t))∥L1
t ([0,M ],L2

x)
=

∫ M

0

∥Q(u(t))∥L2 dt

≤ C

∫ M

0

∥u(t)∥3L2 dt = CM∥u0∥3L2 .

Therefore
∥u∥Lq

t ([0,M ],Lp
x) ≤ C

(
∥u0∥L2 +M∥u0∥3L2

)
< ∞,

as desired.

Taking Lemmas 4.1 through 4.8 together, we see that we have completed the proof of
Theorem 2.3.

To prove Theorem 2.4, it suffices to make the following observations. First, the statement
of Lemma 4.1 holds without change for equation (1.2), and the proof is the same as before,
except Q is now replaced by Q2, and in place of Lemmas 3.7 and 3.8, we use Lemma 3.9.
The statements and proofs of Lemmas 4.2 and 4.3 remain the same for solutions of (1.2).
Lemmas 4.4 through Lemma 4.8 follow for solutions of (1.2), with the same proofs as before,
except that again we now use Lemma 3.9, and we replace Q by Q2 and E by E2 throughout.

5 Ill-posedness for 1DCR
In this section we prove Theorem 2.6. We assume throughout that r < 0, M > 0, and δ > 0
are given.

We will take
u0j(x) = βωje

iNxφ(ωjx),

where φ(x) is as defined in (2.12), and

β = N−r−(1/4),

ω1 =
√
N,

ω2 =
√
N(1 + δ),

(5.1)

and N > 0 will be a large number to be chosen later. As seen in (2.10), a solution of (1.2)
with this initial data is

uj(x, t) = βωje
iβ4ω2

j teiNxφ(ωjx).
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Lemma 5.1. For j = 1 or j = 2, define

I1(N) = β2

∫
|ξ|≤N/4

(1 + |ξ|2)r
∣∣∣∣Fφ

(
ξ −N

ωj

)∣∣∣∣2 dξ,

I2(N) = β2

∫
|ξ|≥2N

(1 + |ξ|2)r
∣∣∣∣Fφ

(
ξ −N

ωj

)∣∣∣∣2 dξ.

Then I1(N) → 0 and I2(N) → 0 as N → ∞.

Proof. For all ξ such that |ξ| ≥ 2N , we have |ξ −N | ≥ |ξ|/2, so

|ξ −N |
ωj

≥ |ξ|
2
√
N(1 + δ)

≥
√
N

1 + δ
. (5.2)

Choose C > 0 such that
|Fφ(η)| ≤ C|η|−2 for |η| ≥ 1. (5.3)

For N sufficiently large, it follows from (5.2) that |ξ−N |
ωj

≥ 1 , so (5.3) implies∣∣∣∣Fφ

(
|ξ −N |

ωj

)∣∣∣∣ ≤ C

∣∣∣∣ξ −N

ωj

∣∣∣∣−2

.

Therefore using (5.2) we can write

I2(N) ≤ Cβ2

∫
|ξ|≥2N

(1 + |ξ|2)r
∣∣∣∣ξ −N

ωj

∣∣∣∣−2

dξ

≤ CN−2r−(1/2)

∫
|ξ|≥2N

|ξ|2r
(

|ξ|
2
√
N(1 + δ)

)−2

dξ = C1N
−1/2,

which proves that I2(N) → 0 as N → ∞.
Also, for all ξ such that |ξ| ≤ N/4, we have |ξ −N | ≥ N/4, so

|ξ −N |
ωj

≥
√
N

4(1 + δ)
,

which in particular is greater than 1 for N large. Therefore, by (5.3), we have

I1(N) ≤ Cβ2

∫
|ξ|≤N/4

(1 + |ξ|2)r
∣∣∣∣ξ −N

ωj

∣∣∣∣−2

dξ

≤ C1N
−2r−(1/2)

∫
|ξ|≤N/4

N2rN−1 dξ = C2N
−1/2,

and hence I1(N) → 0 as N → ∞.

Lemma 5.2. Suppose g is a continuously differentiable function on R. Then for all ρ > 1,∫ ∞

−∞
|g(x)− g(ρx)|2 dx ≤ (ρ− 1)2

∫ ∞

−∞
|x||g′(x)|2 dx.
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Proof. The desired estimate is established by the following computation, which is justified
by Hölder’s inequality and Tonelli’s theorem:∫ ∞

−∞
|g(x)− g(ρx)|2 dx =

∫ ∞

−∞

∣∣∣∣∫ ρx

x

g′(ξ) dξ

∣∣∣∣2 dx

≤
∫ ∞

−∞

∣∣∣∣∫ ρx

x

dξ

∣∣∣∣ ∣∣∣∣∫ ρx

x

g′(ξ)2 dξ

∣∣∣∣ dx

= (ρ− 1)

∫ ∞

−∞
g′(ξ)2

∣∣∣∣∫ ξ

ξ/ρ

x dx

∣∣∣∣ dξ

=
(ρ− 1)2

ρ

∫ ∞

−∞
|ξ||g′(ξ)|2 dξ.

Lemma 5.3. For all N ≥ 0, we have

β2

∫
|ξ|≤2N

(1 + |ξ|2)r
∣∣∣∣Fφ

(
ξ −N

ω1

)
−Fφ

(
ξ −N

ω2

)∣∣∣∣2 dξ ≤ Cδ2

Proof. We have

β2

∫
|ξ|≤2N

(1 + |ξ|2)r
∣∣∣∣Fφ

(
ξ −N

ω1

)
−Fφ

(
ξ −N

ω2

)∣∣∣∣2 dξ

≤Cβ2N2r

∫
|ξ|≤2N

∣∣∣∣Fφ

(
ξ −N

ω1

)
−Fφ

(
ξ −N

ω2

)∣∣∣∣2 dξ

≤Cβ2N2rω1

∫ ∞

−∞
|Fφ(ξ)−Fφ(ρξ)|2 dξ

≤C(ρ− 1)2
∫ ∞

−∞
|ξ||(Fφ)′(ξ)|2 dξ,

where ρ = ω1/ω2, and we have used Lemma 5.2. Since

(ρ− 1)2 =
δ2

(1 + δ)2
≤ δ2,

and
∫∞
−∞ |ξ||(Fφ)′(ξ)|2 dξ < ∞, this proves the lemma.

Lemma 5.4. We have
∥u01 − u02∥Hr ≤ Cδ + o(N) (5.4)

as N → ∞, for some C which is independent of N .
Proof. Writing

∥u01 − u02∥2Hr ≤ β2

∫
|ξ|≥2N

(1 + |ξ|2)r
∣∣∣∣Fφ

(
ξ −N

ω1

)∣∣∣∣2 dξ

+ β2

∫
|ξ|≥2N

(1 + |ξ|2)r
∣∣∣∣Fφ

(
ξ −N

ω2

)∣∣∣∣2 dξ

+ β2

∫
|ξ|≤2N

(1 + |ξ|2)r
∣∣∣∣Fφ

(
ξ −N

ω1

)
−Fφ

(
ξ −N

ω2

)∣∣∣∣2 dξ,
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we see that the desired estimate (5.4) follows from Lemmas 5.1 and 5.3.

Lemma 5.5. For all sufficiently large N , we have

22r−1∥φ∥L2 ≤ ∥u0j∥Hr ≤ 2∥φ∥L2

for j = 1, 2.

Proof. Let j be either 1 or 2. We write

∥u0j∥2Hr = I1(N) + I2(N) + I3(N),

where

Im(N) = β2

∫
Em

(1 + |ξ|2)r
∣∣∣∣Fφ

(
ξ −N

ωj

)∣∣∣∣2 dξ

for m = 1, 2, 3, with
E1 = {|ξ| ≤ N/4} ,
E2 = {|ξ| ≥ 2N} ,
E3 = {N/4 ≤ |ξ| ≤ 2N} .

By Lemma 5.1, we have I1(N) = o(N) and I2(N) = o(N) as N → ∞. Also we have

I3(N) ≤ β2N2r

∫
{N/4≤|ξ|≤2N}

∣∣∣∣Fφ

(
ξ −N

ωj

)∣∣∣∣2 dξ ≤ 2−2rI3(N),

and

β2N2r

∫
{N/4≤|ξ|≤2N}

∣∣∣∣Fφ

(
ξ −N

ωj

)∣∣∣∣2 dξ =

= N−1/2

∫ ∞

−∞

∣∣∣∣Fφ

(
ξ −N

ωj

)∣∣∣∣2 dξ + o(N) =

= N−1/2ωj∥Fφ∥2L2 + o(N) = N−1/2ωj∥φ∥2L2 + o(N).

Since N−1/2ω1 = 1 and N−1/2ω2 = (1 + δ), these estimates are enough to complete the
proof.

Lemma 5.6. Let M > 0 be given. Then there exists a constant C, independent of δ, with
the following property: for every δ > 0 one can find a sequence Nk tending to infinity such
that for N = Nk one has

∥u1(x,M)− u2(x,M)∥Hr ≥ 2r−1∥φ∥L2 − Cδ. (5.5)
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Proof. We have

∥u1(x,M)− u2(x,M)∥2Hr =

= β2

∫ ∞

−∞
(1 + |ξ|2)r

∣∣∣∣eiMω2
1Fφ

(
ξ −N

ω1

)
− eiMω2

2Fφ

(
ξ −N

ω2

)∣∣∣∣2 dξ

= β2

∫ ∞

−∞
(1 + |ξ|2)r

∣∣∣∣Fφ

(
ξ −N

ω1

)
− eiM(ω2

2−ω2
1)Fφ

(
ξ −N

ω2

)∣∣∣∣2 dξ

≥
∣∣∣1− eiM(ω2

2−ω2
1)
∣∣∣2 β2

∫ ∞

−∞
(1 + |ξ|2)r

∣∣∣∣Fφ

(
ξ −N

ω2

)∣∣∣∣2 dξ

− β2

∫ ∞

−∞
(1 + |ξ|2)r

∣∣∣∣Fφ

(
ξ −N

ω1

)
−Fφ

(
ξ −N

ω2

)∣∣∣∣2 dξ

=
∣∣∣1− eiM(ω2

2−ω2
1)
∣∣∣2 ∥u02∥2Hr − ∥u01 − u02∥2Hr .

By Lemmas 5.4 and 5.5, it follows that

∥u1(x,M)− u2(x,M)∥Hr ≥ 2r−1∥φ∥L2

∣∣∣1− eiM(ω2
2−ω2

1)
∣∣∣− Cδ (5.6)

for N sufficiently large.
Now observe that ∣∣∣1− eiM(ω2

2−ω2
1)
∣∣∣ = ∣∣∣1− eiMN−4rδ(2+δ)

∣∣∣ .
Therefore if we choose

N = Nk =

(
π(2k + 1)

Mδ(2 + δ)

)−1/4r

,

we will have ∣∣∣1− eiM(ω2
2−ω2

1)
∣∣∣ = 1,

and hence (5.5) follows from (5.6).

Proof of Theorem 2.6. For a given δ > 0, choose δ1 > 0 such that Cδ1 < δ/2, where C
is the constant in Lemma 5.4, and Cδ < 2r−2∥φ∥L2 , where C is the constant in Lemma 5.6.
Replace δ by δ1 in (5.1) and the lemmas which follow. Then from Lemmas 5.4 and 5.5 it
follows that (2.16) and (2.17) hold, with u = u1 and v = u2, for sufficiently large N , say for
N ≥ N0. On the other hand, by Lemma 5.6 we can find N ≥ N0 for which (5.5) holds as
well, and hence (2.18) also holds for u = u1 and v = u2. This completes the proof.
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