Theorem. Suppose A is an m x n matrix. Then every vector in the null space of A is orthogonal to
every vector in the column space of AT with respect to the standard inner product on R".

Proof. Suppose u is in the null space of A and v is in the column space of A7 .
Since A is an m x n matrix, then A7 is an n x m matrix, which means that AT has m columns. Let
W1, Wa, ..., W stand for the column vectors of AT, so that

AT =[wy wy ... wp].
Since v is in the column space of AT, then v is a linear combination of the column vectors of A, which

means that
V=a1W1 + AW + ...0:m Wy,

where aq, as, ..., a,, are real numbers. But by definition of matrix multiplication this means that
ai
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v=[w; Wy ... Wp]
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If we let b stand for | . | then we can rewrite the last equation as
Am
v=ATb.

Now to prove the theorem we write:

(u,v) =ulv (by definition of standard inner product on R")

=u?ATb (since v = ATb)

= (Au)"b  (since uT AT = (Au)”, by properties of transpose)
=0"b (since Au = 0, because u is in the null space of A)
=0.

This shows that (u,v) = 0, or in other words that u is orthogonal to v, which is what we wished to prove.

Remark: In class, I stated that “every vector in the null space of A is orthogonal to every vector in
the row space of A”. The problem with that statement is that vectors in the null space of A are column
vectors in R™, and vectors in the row space of A are row vectors in R,,. Up to now, we have only defined the
meaning of the phrase “u is orthogonal to v’when u and v are a pair of vectors in the same vector space.
What would it mean for a vector in one vector space, R™, to be orthogonal to a vector in a different vector
space, R,?

U1
You could get around this problem by defining a vector u= | : | in R"” to be orthogonal to a vector

Un,
v=[v1 ... wv,]in R, if the matrix product vu = viuy + vaug + - - - + v, u, is equal to 0. Then to prove
the theorem as I stated it in class, you would have to show that for every vector u in the null space of A and
every v in the row space of A, we have va = 0. In fact I did prove the theorem this way in the 1:30 section.



