Theorem. Suppose A is an $m \times n$ matrix. Then every vector in the null space of A is orthogonal to every vector in the column space of A^T , with respect to the standard inner product on R^n .

Proof. Suppose **u** is in the null space of A and **v** is in the column space of A^T .

Since A is an $m \times n$ matrix, then A^T is an $n \times m$ matrix, which means that A^T has m columns. Let $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m$ stand for the column vectors of A^T , so that

$$A^T = [\mathbf{w}_1 \quad \mathbf{w}_2 \quad \dots \quad \mathbf{w}_m].$$

Since \mathbf{v} is in the column space of A^T , then \mathbf{v} is a linear combination of the column vectors of A^T , which means that

$$\mathbf{v} = a_1 \mathbf{w}_1 + a_2 \mathbf{w}_2 + \dots a_m \mathbf{w}_m,$$

where a_1, a_2, \ldots, a_m are real numbers. But by definition of matrix multiplication this means that

$$\mathbf{v} = [\mathbf{w}_1 \quad \mathbf{w}_2 \quad \dots \quad \mathbf{w}_m] \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}.$$

If we let ${f b}$ stand for $\left[egin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_m \end{array} \right]$ then we can rewrite the last equation as

$$\mathbf{v} = A^T \mathbf{b}$$

Now to prove the theorem we write:

$$(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{v}$$
 (by definition of standard inner product on \mathbf{R}^n)
 $= \mathbf{u}^T A^T \mathbf{b}$ (since $v = A^T \mathbf{b}$)
 $= (A\mathbf{u})^T \mathbf{b}$ (since $\mathbf{u}^T A^T = (A\mathbf{u})^T$, by properties of transpose)
 $= \mathbf{0}^T \mathbf{b}$ (since $A\mathbf{u} = \mathbf{0}$, because \mathbf{u} is in the null space of A)
 $= 0$.

This shows that $(\mathbf{u}, \mathbf{v}) = 0$, or in other words that \mathbf{u} is orthogonal to \mathbf{v} , which is what we wished to prove.

Remark: In class, I stated that "every vector in the null space of A is orthogonal to every vector in the row space of A". The problem with that statement is that vectors in the null space of A are column vectors in R^n , and vectors in the row space of A are row vectors in R_n . Up to now, we have only defined the meaning of the phrase " \mathbf{u} is orthogonal to \mathbf{v} " when \mathbf{u} and \mathbf{v} are a pair of vectors in the same vector space. What would it mean for a vector in one vector space, R^n , to be orthogonal to a vector in a different vector space, R_n ?

You could get around this problem by defining a vector $\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$ in R^n to be orthogonal to a vector $\mathbf{v} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$ in R_n if the matrix product $\mathbf{v} \mathbf{u} = v_1 u_1 + v_2 u_2 + \dots + v_n u_n$ is equal to 0. Then to prove

 $\mathbf{v} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$ in R_n if the matrix product $\mathbf{v}\mathbf{u} = v_1u_1 + v_2u_2 + \dots + v_nu_n$ is equal to 0. Then to prove the theorem as I stated it in class, you would have to show that for every vector \mathbf{u} in the null space of A and every \mathbf{v} in the row space of A, we have $\mathbf{v}\mathbf{u} = 0$. In fact I did prove the theorem this way in the 1:30 section.