To do this problem easily, you need to realize a fact which I briefly stated in class (but I’m not sure how explicit I made it): Suppose you have a family of extremals \(y(x) \) of a functional emanating from a given point in the \(xy \)-plane; i.e., the family of all solutions of the Euler equation which satisfy \(y(a) = y_0 \), where \(a \) and \(y_0 \) are fixed. Let \(C \) be the envelope curve for this family of extremals; i.e. \(C \) is the curve of points where “two neighboring extremals in the family intersect each other”. Then for each extremal in the family, the conjugate points to \(0 \) (for that particular extremal) are the points where this extremal touches \(C \).

(A somewhat more precise definition of the envelope is as follows. For each fixed extremal \(\tilde{y} \) with \(\tilde{y}(a) = y_0 \), we will define a point \(P \) on the envelope by taking the limit of intersection points of \(\tilde{y} \) with neighboring extremals. To do this, take any extremal \(\tilde{y} \) with \(\tilde{y}(a) = \tilde{y}_0 \) and \(\tilde{y}'(a) \) close to \(\tilde{y}'(a) \), and look at a point \((x, \tilde{y})\) in the \(xy \)-plane where the graphs of \(\tilde{y} \) and \(\tilde{y} \) intersect. Now change \(\tilde{y} \) so that its graph comes closer and closer to the graph of \(\tilde{y} \); we can do this by making \(\tilde{y}'(a) \) come closer and closer to \(\tilde{y}'(a) \). As we do this, the intersection point \((x, \tilde{y})\) will come closer and closer to a limiting point \(P \). We then say that \(P \) is a point on the envelope of the family. So the envelope is, by definition, the curve composed of all the limiting points \(P \) we get in this way by starting with all possible extremals \(\tilde{y} \).

Now back to the problem. Since \(F = \frac{y}{(y')^2} \) is independent of \(x \), the Euler equation has the first integral \(y' F_{y'} - F = C \), which reduces to the equation

\[
-\frac{3y}{(y')^2} = C.
\]

Solving for \(y' \) and separating variables gives

\[
\int \frac{y'}{\sqrt{y}} \, dx = \int P \, dx,
\]

where \(P \) is a constant. Integrating both sides and solving for \(y \) gives

\[
y = (P x + Q)^2,
\]

where \(P \) and \(Q \) are arbitrary constants. Thus the family of extremals for \(J \) consists of parabolas opening upwards, with their vertices at arbitrary points on the \(x \)-axis and with arbitrarily large steepness. Graphing a few of the parabolas in this family makes clear that their envelope is the \(x \)-axis (not \(x = 0 \) as stated in the text’s hint).

Checking \(F_{y' y'} \) we see that \(F_{y' y'} = 6y/(y')^4 \), which is greater than or equal to zero for \(x \in [0, a] \) for every extremal, and which is strictly positive at each \(x \) for which \(y(x) \neq 0 \).

Now using the conditions \(y(0) = 1 \) and \(y(a) = A \) to find \(P \) and \(Q \), we find that there are two possibilities for \(y \): either

\[
y = y_1 = \left[\frac{1 - \sqrt{A}}{a} \right]^2 x - 1
\]

or

\[
y = y_2 = \left[\frac{1 + \sqrt{A}}{a} \right]^2 x - 1.
\]

As explained above, for each of these two extremals, the conjugate point to \(0 \) (for that particular extremal) is the point where it touches the envelope, which in this case is the \(x \)-axis. It is easy to see that \(y_1 \) touches the \(x \)-axis at a single point, which is outside the interval \([0, a]\). So for \(y_1 \) there are no conjugate points to \(0 \) in \([0, a]\). Also, since \(y_1 \neq 0 \) on \([0, a]\) then as noted above \(F_{y' y'} > 0 \) on \([0, a]\). Therefore \(y_1 \) satisfies the sufficient conditions for a local minimum given in class, so \(y_1 \) is a local minimum for \(J \) in \(D_1[0, a] \).

For \(y_2 \), on the other hand, there is a conjugate point in \([0, a]\), so we have almost verified that Jacobi’s necessary condition for a local minimum (stated in class and proved in the text; see p. 112) is not satisfied.
by y_2. This would then show that y_2 is not a local minimum for J, since it does not satisfy the necessary condition. The one little difficulty is that as a hypothesis of Jacobi’s necessary condition we must assume that $F_{yy'} > 0$ on $[0, a]$ (see text, p. 112), and that is not the case for y_2. One might consider checking the proof of Jacobi’s necessary condition given in the text to see if it could still be made to work under the assumption that $F_{yy'}$ vanishes at one point in $[0, a]$, but I haven’t tried to do this.