Solutions to some exercises on outer measure

#21, p. 352. We’ll show that $\mu^*(E) = 1$ for every nonempty subset E of X. To see this, observe that the only collection of sets in S which covers E (ignoring the empty set, which has no effect), is the collection consisting of the single set X. So, by definition the outer measure of E equals $\mu(X)$, which is 1.

It is easy to verify that the only collection of measurable sets that both \emptyset and X are measurable. (Alternatively, we could use the fact that if μ is a premeasure on an algebra A, then every set in A is μ^* measurable; this was proved as part of the proof of the Carathéodory-Hahn extension theorem. In this case S is a σ-algebra and therefore also an algebra, and μ is clearly a measure on S, so it is a premeasure on S.)

If E is any subset of X which is neither empty, nor equal to all of X, then E is not measurable. To see this, let x_1 be an element in E and let x_2 be an element in \mathbb{E}^c, and let $A = \{x_1, x_2\}$. Then $A, A \cup E$, and $A \sim E$ are all non-empty, so $\mu^*(A) = \mu^*(A \cup E) = \mu^*(A \sim E) = 1$, so $\mu^*(A) \neq \mu^*(A \cup E) + \mu^*(A \sim E)$. Hence E is not measurable.

This proves that the collection of measurable sets in X is exactly the collection $\{\emptyset, X\}$.

#25, p. 357. The only finite disjoint collections of sets $\{E_k\}_{k=1}^n$ in S are the collection $\{\emptyset\}$ and the collection $\{A\}$, with only one set each, so it’s trivial that μ is finitely additive. To verify that μ is countably monotone, it’s enough to check that $\mu(A) \leq \mu(X)$, since the only way to cover one set in S by a union of other sets in S is to take $A \subseteq A$. Define a set function ν on Σ by setting $\nu(\emptyset) = 0$, $\nu(A) = 1$, $\nu(X \sim A) = 1$, and $\nu(X) = 2$. Then Σ is a σ-algebra which contains S, ν is a measure on Σ, and ν agrees with μ on S.

Notice, however, that ν does not agree with the outer measure μ^* induced by μ on Σ. In fact, from the definition of μ^*, we see easily that $\mu^*(E) = 2$ whenever E is a subset containing points which are not in A, $\mu^*(E) = 1$ whenever E is a nonempty subset of A, and $\mu^*(E) = 0$ when E is empty. In particular, $\mu^*(X \sim A) = 2$, so $\mu^*(X \sim A) \neq \nu(X \sim A)$.

We claim that the only μ^*-measurable sets are \emptyset and X. To see this, suppose E is any set which is neither empty nor equal to all of X. There are two cases to consider: either E contains points which are not in A, or E is a subset of A. In the first case, $\mu^*(X \cap E) = \mu^*(E) = 2$ and, since $X \sim E$ is not empty, $\mu^*(X - E) \geq 1$. So

$$\mu^*(X \cap E) + \mu^*(X \sim E) = 3 \neq \mu^*(X),$$

which proves that E is not μ^*-measurable. In the second case, when $E \subseteq A$, we have $\mu^*(X \sim E) = 2$ and $\mu^*(X \cap E) = 1$, so again

$$\mu^*(X \cap E) + \mu^*(X \sim E) = 3 \neq \mu^*(X),$$

and again E is not μ^*-measurable.

#26, p. 357. The only disjoint collections of non-empty sets in S whose unions are also in S are collections with just one set, so μ is trivially finitely additive on S. (Note that $[0, 1]$ and $[2, 3]$ are disjoint sets in S, but their union is not in S.) The only ways to cover one set in S by a union of nonempty sets in S are: $[0, 1] \subset [0, 3]$, $[2, 3] \subset [0, 3]$, and covers in which a set is covered by itself. Since $\mu([0, 1]) \leq \mu([0, 3])$ and $\mu([2, 3]) \leq \mu([2, 3])$, it follows that μ is countably monotone on S. Hence μ is a premeasure on S.

However, unlike the measure in problem 25 above, this premeasure μ cannot be extended to a measure ν on any σ-algebra containing S. For any σ-algebra containing S must also contain the set $[0, 1] \cup [2, 3]$, and since $[0, 1] \cup [2, 3] \subseteq [0, 3]$, if ν is a measure defined for these sets then we must have

$$\nu([0, 1]) + \nu([2, 3]) = \nu([0, 1] \cup [2, 3]) \leq \nu([0, 3]).$$

Therefore ν could not be an extension of μ, because

$$\mu([0, 1]) + \mu([2, 3]) = 2 > \mu([0, 3]).$$
It’s not hard to see from the definition of \(\mu^* \) that \(\mu^*(E) = 1 \) for any nonempty subset \(E \) of \(\mathbb{R} \) which is contained in \([0, 3], \) and (using the convention mentioned in the footnote at the bottom of page 350) \(\mu^*(E) = \infty \) for any subset \(E \) of \(\mathbb{R} \) which has at least one point in common with \(\mathbb{R} \sim [0, 3]. \)

The \(\mu^* \)-measurable sets consist of all subsets of the form \(A \cup B, \) where \(A \subseteq \mathbb{R} \sim [0, 3] \) and either \(B = \emptyset \) or \(B = [0, 3]. \) To see this, first let’s check that any such set is measurable.

Suppose \(A \) is any subset of \(\mathbb{R} \sim [0, 3], \) and \(C \) is any subset of \(\mathbb{R}. \) There are three possibilities: either \(C \) is empty, or \(C \subset [0, 3], \) or \(C \) has at least one point in common with \(\mathbb{R} \sim [0, 3]. \) In the first case, clearly
\[
\mu^*(C) = \mu^*(C \cap A) + \mu^*(C \sim A)
\]
is true, because all three measures are zero. In the second case, we have \(\mu^*(C) = 1, \) \(\mu^*(C \cap A) = 0, \) and \(\mu^*(C \sim A) = 1, \) so the above equation is still true. In the third case, we have \(\mu^*(C) = \infty, \) and since the sets \(C \cap A \) and \(C \sim A \) together cover \(C, \) at least one of them must contain a point in \(\mathbb{R} \sim [0, 3], \) so one of the measures on the right side of the equation must be infinite. Therefore the equation again holds in this case. So \(A \) is measurable.

Now \(B = \emptyset \) is measurable, and \(B = [0, 3] \) is measurable because for every nonempty subset \(C \) of \(\mathbb{R}, \) if \(C \subseteq [0, 3] \) then
\[
1 = \mu^*(C) = \mu^*(C \cap B) + \mu^*(C \sim B) = 1 + 0,
\]
and if \(C \) has at least one point in common with \([0, 3]\) then the equation still holds, by the same argument as in the preceding paragraph.

Since all sets \(A \) and \(B \) of the above form are measurable, it follows that the unions \(A \cup B \) of sets of the above form are also measurable.

Now let’s show that any set \(E \) not of the form \(A \cup B \) with \(A \subseteq \mathbb{R} \sim [0, 3] \) and \(B = \emptyset \) or \(B = [0, 3] \) is not measurable. If \(E \) is not of this form, then \(E \) has at least one element \(x_1 \) in common with \([0, 3], \) and there is at least one element \(x_2 \) of \([0, 3]\) which is not in \(E. \) Let \(C = \{x_1, x_2\}. \) Then \(\mu^*(C) = 1, \) \(\mu^*(C \cap E) = \mu^*(\{x_1\}) = 1, \) and \(\mu^*(C \sim E) = \mu^*(\{x_2\}) = 1. \) Hence
\[
1 = \mu^*(C) = \mu^*(C \cap E) + \mu^*(C \sim E) = 2,
\]
so \(E \) is not measurable.

\#27, p. 357. Every outer measure is countably monotone, so if \(\mu^* \) is an extension of \(\mu, \) then because \(\mu^* \) is countably monotone, then \(\mu \) must be also.

Conversely, suppose \(\mu \) is countably monotone. We want to prove that \(\mu^* \) is an extension of \(\mu, \) or in other words that for every set \(E \) in \(\mathcal{S} \), \(\mu^*(E) = \mu(E). \) From the definition of \(\mu^* \) it is clear that \(\mu^*(E) \leq \mu(E), \) so it suffices to prove the reverse inequality. For every \(\epsilon > 0, \) by definition of \(\mu^* \) there exist sets \(E_k \) in \(\mathcal{S} \) such that \(E \subseteq \bigcup_{k=1}^\infty E_k \) and
\[
\sum_{k=1}^\infty \mu(E_k) \leq \mu^*(E) + \epsilon.
\]
Since \(\mu \) is countably monotone, we have
\[
\mu(E) \leq \sum_{k=1}^\infty \mu(E_k).
\]
Combining with the preceding inequality we get
\[
\mu(E) \leq \mu^*(E) + \epsilon,
\]
and since \(\epsilon \) is arbitrary, it follows that \(\mu(E) \leq \mu^*(E), \) as desired.