Math 4433 Exam 3

1. (20 points)

- **a.** Define "f is continuous at c".
- **b.** Prove that the composition of continuous functions is continuous.
- **2.** (20 points)
- **a.** Define "the derivative of f at c is L".

b. Prove that if a function is differentiable at a point, then it is continuous at that point.

3. (20 points) Suppose $f : \mathbf{R} \to \mathbf{R}$ is continuous on \mathbf{R} , and suppose that for all $x \in \mathbf{Q}$, $f(x) \ge 0$. Show that for all $x \in \mathbf{R}$, $f(x) \ge 0$.

4. (20 points)

a. Suppose $f : [a, b] \to \mathbf{R}$ is continuous on [a, b]. Suppose that for all $x \in [a, b]$, $f(x) \neq 0$. Show that 1/f is bounded on [a, b].

b. Give an example of a function $f : [0,1] \to \mathbf{R}$ which is continuous on [0,1], but 1/f is not bounded on [0,1].

5. (20 points) Define f(x) for all $x \neq 0$ by $f(x) = 1/x^2$. Use the definition of derivative to show that for all $c \neq 0$, $f'(c) = -2/c^3$.

6. (20 points) Define $f : \mathbf{R} \to \mathbf{R}$ by

$$f(x) = \begin{cases} x \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Show that f is not differentiable at 0.