## Math 4433

## Exam 3

1. (20 points)
a. Define " $f$ is continuous at $c$ ".
b. Prove that the composition of continuous functions is continuous.
2. (20 points)
a. Define "the derivative of $f$ at $c$ is $L$ ".
b. Prove that if a function is differentiable at a point, then it is continuous at that point.
3. (20 points) Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous on $\mathbf{R}$, and suppose that for all $x \in \mathbf{Q}$, $f(x) \geq 0$. Show that for all $x \in \mathbf{R}, f(x) \geq 0$.
4. (20 points)
a. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$. Suppose that for all $x \in[a, b], f(x) \neq 0$. Show that $1 / f$ is bounded on $[a, b]$.
b. Give an example of a function $f:[0,1] \rightarrow \mathbf{R}$ which is continuous on $[0,1]$, but $1 / f$ is not bounded on $[0,1]$.
5. (20 points) Define $f(x)$ for all $x \neq 0$ by $f(x)=1 / x^{2}$. Use the definition of derivative to show that for all $c \neq 0, f^{\prime}(c)=-2 / c^{3}$.
6. (20 points) Define $f: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
f(x)= \begin{cases}x \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0 .\end{cases}
$$

Show that $f$ is not differentiable at 0 .

