Math 4433

Test 3

For these problems, unless specifically requested otherwise, you may use without proof any result from class.

1. (15 points) Suppose $g: A \rightarrow \mathbf{R}$ and $f: B \rightarrow \mathbf{R}$, and $g(x) \in B$ for every $x \in A$, so that $f \circ g: A \rightarrow \mathbf{R}$. Let $c \in A$, and suppose g is continuous at c and f is continuous at $g(c)$. Show that $f \circ g$ is continuous at c.
2. (15 points) State carefully and prove the product rule for derivatives.
3. (10 points) Suppose $f:[0,1] \rightarrow \mathbf{R}$ is such that $f(1 / n)=(-1)^{n}$ for all $n \in \mathbf{N}$. Prove that $\lim _{x \rightarrow 0} f(x)$ cannot exist.
4. (10 points) Suppose $f:[0,1] \rightarrow \mathbf{R}$, and there exists a sequence x_{n} such that $0 \leq x_{n} \leq 1$ for all $n \in \mathbf{N}$, and $f\left(x_{n}\right)=n$ for all $n \in[0,1]$. Show that f cannot be continuous on $[0,1]$.
5. (20 points) Consider the following two statements, one of which is true and one of which is false:
(i) If $f:[0,1] \rightarrow \mathbf{R}$ is continuous at 0 , and $f(1 / n)>0$ for all $n \in \mathbf{N}$, then $f(0)>0$.
(ii) If $f:[0,1] \rightarrow \mathbf{R}$ is continuous at 0 , and $f(1 / n) \geq 0$ for all $n \in \mathbf{N}$, then $f(0) \geq 0$.
a. Identify which of the two statements is true, and prove it.
b. Give an example of a function showing that the other statement is false.
6. (15 points) Prove that the equation $10^{x}=2$ has a solution. (You may assume that 10^{x} is a continuous function on \mathbf{R}.)
7. (15 points) Suppose $g(x)$ is bounded on $[0,1]$, and let $f:[0,1] \rightarrow \mathbf{R}$ be defined by $f(x)=x^{2} g(x)$. Show that f is differentiable at 0 , and find $f^{\prime}(0)$.
