Math 4433 Test 3

For these problems, unless specifically requested otherwise, you may use without proof any result from class.

- **1.** (15 points) Suppose $g : A \to \mathbf{R}$ and $f : B \to \mathbf{R}$, and $g(x) \in B$ for every $x \in A$, so that $f \circ g : A \to \mathbf{R}$. Let $c \in A$, and suppose g is continuous at c and f is continuous at g(c). Show that $f \circ g$ is continuous at c.
- 2. (15 points) State carefully and prove the product rule for derivatives.
- **3.** (10 points) Suppose $f : [0,1] \to \mathbf{R}$ is such that $f(1/n) = (-1)^n$ for all $n \in \mathbf{N}$. Prove that $\lim_{x \to 0} f(x)$ cannot exist.
- **4.** (10 points) Suppose $f : [0,1] \to \mathbf{R}$, and there exists a sequence x_n such that $0 \le x_n \le 1$ for all $n \in \mathbf{N}$, and $f(x_n) = n$ for all $n \in [0,1]$. Show that f cannot be continuous on [0,1].
- 5. (20 points) Consider the following two statements, one of which is true and one of which is false:
- (i) If $f:[0,1] \to \mathbf{R}$ is continuous at 0, and f(1/n) > 0 for all $n \in \mathbf{N}$, then f(0) > 0.
- (ii) If $f:[0,1] \to \mathbf{R}$ is continuous at 0, and $f(1/n) \ge 0$ for all $n \in \mathbf{N}$, then $f(0) \ge 0$.

a. Identify which of the two statements is true, and prove it.

- **b.** Give an example of a function showing that the other statement is false.
- 6. (15 points) Prove that the equation $10^x = 2$ has a solution. (You may assume that 10^x is a continuous function on **R**.)
- 7. (15 points) Suppose g(x) is bounded on [0,1], and let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = x^2 g(x)$. Show that f is differentiable at 0, and find f'(0).