Math 4433

Test 3

1. (15 points) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$. Suppose that $\lim _{x \rightarrow c} f(x)=0$ and suppose there exists M such that $|g(x)| \leq M$ for all $x \in \mathbb{R}$. (Do not assume $\lim _{x \rightarrow c} g(x)$ exists.) Prove that $\lim _{x \rightarrow c} f(x) g(x)=0$.
2. (15 points) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Let S be the set defined by $S=\{x \in \mathbb{R}: f(x)>0\}$. Show that S is open.
3. (15 points) Let D be a compact subset of \mathbb{R} and suppose that $f: D \rightarrow \mathbb{R}$ is continuous. Suppose that for all $x \in D, f(x)>0$. Show that there exists a number $b>0$ such that for all $x \in D, f(x) \geq b$.
4. (20 points) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Is it possible for $f(\mathbb{R})$ to equal $\{3,4\}$ (the set containing just the two numbers 3 and 4)? Prove your answer.
5. (20 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cc}
x^{2}, & \text { if } x \text { is rational } \\
0, & \text { if } x \text { is irrational. }
\end{array}\right.
$$

Prove that f is differentiable at 0 , and find $f^{\prime}(0)$.
6a. (10 points) Use the definition of derivative to show that if $f(x)=\frac{1}{x}$ then for all $c \neq 0$,

$$
f^{\prime}(c)=\frac{-1}{c^{2}} .
$$

6b. (5 points) Suppose $g(c)=3$ and $g^{\prime}(c)=7$. Find the derivative of the function $\frac{1}{g(x)}$ at c, using the result of $\mathbf{5 a}$ and the Chain Rule.

