Math 4433 Test 3

- **1.** (15 points) Suppose $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$. Suppose that $\lim_{x \to c} f(x) = 0$ and suppose there exists M such that $|g(x)| \leq M$ for all $x \in \mathbb{R}$. (Do not assume $\lim_{x \to c} g(x)$ exists.) Prove that $\lim_{x \to c} f(x)g(x) = 0$.
- **2.** (15 points) Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous. Let S be the set defined by $S = \{x \in \mathbb{R} : f(x) > 0\}$. Show that S is open.
- **3.** (15 points) Let D be a compact subset of \mathbb{R} and suppose that $f: D \to \mathbb{R}$ is continuous. Suppose that for all $x \in D$, f(x) > 0. Show that there exists a number b > 0 such that for all $x \in D$, $f(x) \ge b$.
- 4. (20 points) Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous. Is it possible for $f(\mathbb{R})$ to equal $\{3, 4\}$ (the set containing just the two numbers 3 and 4)? Prove your answer.
- **5.** (20 points) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2, & \text{if } x \text{ is rational,} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$$

Prove that f is differentiable at 0, and find f'(0).

6a. (10 points) Use the definition of derivative to show that if $f(x) = \frac{1}{x}$ then for all $c \neq 0$,

$$f'(c) = \frac{-1}{c^2}.$$

6b. (5 points) Suppose g(c) = 3 and g'(c) = 7. Find the derivative of the function $\frac{1}{g(x)}$ at c, using the result of **5a** and the Chain Rule.