3. Let \(\varepsilon > 0 \) be given. By assumption, there exists \(\delta_1 > 0 \) such that if \(x, y \in [0, 1] \) and \(|x - y| < \delta_1 \), then \(|f(x) - f(y)| < \varepsilon \). Also, there exists \(\delta_2 > 0 \) s.t. if \(x, y \in [2, 3] \) and \(|x - y| < \delta_2 \), then \(|f(x) - f(y)| < \varepsilon \).

Define \(\delta = \min(\delta_1, \delta_2, 1) \). Suppose \(x, y \in [0, 1] \cup [2, 3] \) and \(|x - y| < \delta \). Then \(|x - y| < 1 \); so we can't have \(x \in [0, 1] \) and \(y \in [2, 3] \) (because that would mean \(y - x > 2 - 1 = 1 \)) and we can't have \(x \in [2, 3] \) and \(y \in [0, 1] \) (because that would mean \(x - y > 2 - 1 = 1 \)).

So either (i) \(x, y \) are both in \([0, 1]\) or (ii) \(x, y \) are both in \([2, 3]\). In case (i), since \(|x - y| < \delta \leq \delta_1 \), we have \(|f(x) - f(y)| < \varepsilon \); and in case (ii), since \(|x - y| < \delta \leq \delta_2 \), we have \(|f(x) - f(y)| < \varepsilon \).

4. \(\alpha \) If \(x = 0 \), then \(b_n(x) = b_n(0) = 0 \) for all \(n \), so \(\lim b_n(x) = 0 \).

\(\beta \) If \(x > 0 \), then choose \(N \in \mathbb{N} \) s.t. \(N > \frac{x}{2} \). For all \(n \geq N \), we have \(\frac{1}{n} \leq \frac{1}{N} < x \), so \(b_n(x) \to 0 \) (by \(2 \)). It follows that \(\lim b_n(x) = 0 \).

\(\beta \) \(\lim\left(\int_0^1 b_n(x) \, dx \right) = \lim\left(\int_0^x \left(n^2 x - n^3 x^2 \right) \, dx + \int_x^1 0 \, dx \right) = \lim\left(n^2 \int_0^x x \, dx - n^3 \int_0^x x^2 \, dx \right) = \lim\left(n^2 \left[\frac{x^2}{2} \right]_0^x - n^3 \left[\frac{x^3}{3} \right]_0^x \right) = \lim\left(n^2 \cdot \frac{1}{2} - n^3 \cdot \frac{1}{3} \right) = \lim\left(\frac{1}{2} - \frac{1}{3} \right) = \frac{1}{6} \neq 0 \).

5. Since \(b_n \) is continuous on \([0, 1]\) for each \(n \), and \(b_n \) converges pointwise to 0 on \([0, 1]\) by \(4 \), then if \(b_n \) were to converge uniformly on \([0, 1]\), it would follow from a theorem proved in class that \(\lim s_n b_n = s_n 0 = 0 \). Since \(\lim s_n b_n \neq 0 \) by \(4 \), then \(b_n \) cannot converge uniformly on \([0, 1]\).
6. We'll prove the statement. Define $g : \mathbb{R} \to \mathbb{R}$ by

 $g(x) = \int_0^x f \, dt \quad \text{for } x \in \mathbb{R}.

 Let $x \in \mathbb{R}$ be given; we'll show that $g'(x) = f(x)$. Choose an interval $[a, b]$ such that $a < x < b$, then

 $g(x) = \int_a^x f \, dt = \int_a^x f + \int_x^b \frac{d}{dx} f

 Since f is continuous on $[a, b]$, then by the FTC part 2,

 $\frac{d}{dx} \left(\int_a^x f \right) = f(x)$. Hence

 $g'(x) = \frac{d}{dx} \int_a^x f + \frac{d}{dx} \int_x^b f = f(x) + 0 = f(x).

7. By the FTC part 2, $F'(x) = \sqrt{1 + \sin^2 x} \geq \sqrt{1} = 1 > 0

 for all $x > 0$. It follows from a theorem proved in class (actually, in a homework problem) that F is strictly increasing on $[0, \pi]$.}

8. a) If $x = 0$, then $b_n(x) = 2 - n \cdot 0 = 2^0 = 1$ for all n, so $\lim b_n(x) = 1$.

 If $x \neq 0$, then

 $2^{-nx^2} = \frac{1}{(2^{x^2})^n} = \frac{b^n}{b^n} = b^n$

 where

 $b = \frac{1}{2^{x^2}} \leq \frac{1}{2^0} = 1$, so $\lim b^n = 0$. Thus $\lim b_n(x) = 0$.

 This shows that $\lim b_n(x) = b(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0. \end{cases}$

b) No, b_n cannot converge uniformly on $[-1, 1]$; because if b_n were to converge uniformly to b on $[-1, 1]$, then since each b_n is continuous on $[-1, 1]$, it would follow that b is continuous on $[-1, 1]$. But the function b we found in part a) is not continuous on $[-1, 1]$ (it is not cont. at 0.)