Math 4163
Exam 2

Name: Answer key

NOTE: On this exam, you may use any solution formula from class, without having to rederive it.

1. (30 points) Solve Laplace's equation inside a rectangle $0 \leq x \leq L$, $0 \leq y \leq H$, with the boundary conditions

$$u(0, y) = 0, \quad u(L, y) = 0, \quad u(x, 0) = 0, \quad \frac{\partial u}{\partial y}(x, H) = f(x).$$

Write the answer as an infinite series, and express the coefficients in terms of the function $f(x)$.

Write $u(x, y) = P(x) Q(y)$ where \(\frac{P''(x)}{P(x)} = - \lambda = \frac{-Q''(y)}{Q(y)} \),

\(P(0) = 0 \), \(P(L) = 0 \), and \(Q(0) = 0 \). The boundary-value problem

\[
\begin{align*}
P''(x) &= -\lambda P(x) \\
P(0) &= 0 \\
P(L) &= 0
\end{align*}
\]

has solutions $P(x) = \sin \left(\frac{n\pi x}{L} \right).$ The equation $Q''(y) = (\lambda) Q(y) = \left(\frac{n\pi}{L} \right)^2 Q(y)$ has solutions $Q(y) = A \cosh \left(\frac{n\pi y}{L} \right) + B \sinh \left(\frac{n\pi y}{L} \right).$ and from $Q(0) = 0$ we get $A = 0$, so $Q(y) = B \sinh \left(\frac{n\pi y}{L} \right).$ Therefore, separated solutions are $u_n(x, y) = B_n \sin \left(\frac{n\pi x}{L} \right) \sinh \left(\frac{n\pi y}{L} \right); \quad n = 1, 2, \ldots$

Write $u(x, y) = \sum_{n=1}^{\infty} B_n \sin \left(\frac{n\pi x}{L} \right) \sinh \left(\frac{n\pi y}{L} \right).$ Then

\[
\begin{align*}
\frac{\partial u}{\partial y}(x, y) &= \sum_{n=1}^{\infty} B_n \sin \left(\frac{n\pi x}{L} \right) \cdot \left(\frac{n\pi}{L} \right) \cosh \left(\frac{n\pi y}{L} \right), \\
\end{align*}
\]

\[
\begin{align*}
\frac{\partial u}{\partial y}(x, H) &= \sum_{n=1}^{\infty} B_n \left(\frac{n\pi}{L} \right) \cosh \left(\frac{n\pi H}{L} \right) \sin \left(\frac{n\pi x}{L} \right) = f(x). \\
\end{align*}
\]

Therefore $B_n \left(\frac{n\pi}{L} \right) \cosh \left(\frac{n\pi H}{L} \right) = \frac{2}{L} \int_0^L f(w) \sin \left(\frac{n\pi w}{L} \right) \, dw$, or

\[
B_n = \frac{2}{L \left(\frac{n\pi}{L} \right) \cosh \left(\frac{n\pi H}{L} \right)} \int_0^L f(w) \sin \left(\frac{n\pi w}{L} \right) \, dw.
\]
2. (15 points)

a. Suppose \(u(x, y, t) \) is a solution of the equation \(\frac{\partial u}{\partial t} = \nabla^2 u \) on the rectangle \(0 \leq x \leq 2, \quad 0 \leq y \leq 3 \). Suppose that at all times \(t \), \(u \) satisfies the boundary conditions

\[
\frac{\partial u}{\partial x}(0, y, t) = y, \quad \frac{\partial u}{\partial x}(2, y, t) = 0, \quad \frac{\partial u}{\partial y}(x, 0, t) = 0, \quad \frac{\partial u}{\partial y}(x, 3, t) = 0.
\]

(See diagram.) Find the derivative with respect to \(t \) of the integral

\[
\int_0^3 \int_0^2 u \, dx \, dy.
\]

(Hint: use the divergence theorem.)

\[
\frac{d}{dt} \int_0^3 \int_0^2 u \, dx \, dy = \int_0^3 \int_0^2 \frac{\partial u}{\partial t} \, dx \, dy = \int_0^3 \int_0^2 \nabla \cdot (\nabla u) \, dx \, dy = \oint \nabla u \cdot \hat{n}.
\]

where the integral \(\oint \) is over the boundary of the rectangle and \(\hat{n} \) is the outward normal to the rectangle. Then

\[
\oint \nabla u \cdot \hat{n} = \int_{\text{left edge}} \nabla u \cdot (-\hat{t}) + \int_{\text{top edge}} \nabla u \cdot \hat{j} + \int_{\text{right edge}} \nabla u \cdot (\hat{t} + \hat{j}) + \int_{\text{bottom edge}} \nabla u \cdot (-\hat{j}) =
\]

\[
= \int_0^3 \frac{\partial y}{\partial x} \, dy + \int_0^2 \frac{\partial y}{\partial x} (x, 3) \, dx + \int_0^3 \frac{\partial y}{\partial x} (2, y) \, dy + \int_0^3 \frac{\partial y}{\partial x} (x, 0) \, dx =
\]

\[
= \int_0^3 (-y) \, dy + \int_0^2 0 \, dx + \int_0^3 0 \, dy + \int_0^3 0 \, dx = -\frac{9}{2}, \quad \text{So} \quad \frac{d}{dt} \int_0^3 \int_0^2 u \, dx \, dy = -\frac{9}{2}.
\]

b. Does the equation \(\nabla^2 u = 0 \) have a solution on the rectangle which satisfies the boundary conditions

\[
\frac{\partial u}{\partial x}(0, y) = y, \quad \frac{\partial u}{\partial x}(2, y) = 0, \quad \frac{\partial u}{\partial y}(x, 0) = 0, \quad \frac{\partial u}{\partial y}(x, 3) = 0?
\]

Why or why not?

No, because if \(\nabla^2 u = 0 \), then \(u(x, y) \) is a time-independent solution of \(\frac{du}{dt} = \nabla^2 u \), with \(\frac{du}{dt} = 0 \). But from part a) it would follow that

\[
\frac{d}{dt} \int_0^3 \int_0^2 u \, dx \, dy = \int_0^3 \int_0^2 \frac{\partial u}{\partial t} \, dx \, dy = -\frac{9}{2}, \quad \text{if} \ u \ \text{satisfied the above boundary conditions. Since} \ S_0^3 \int_0^2 \frac{du}{dt} \, dy = \int_0^2 \int_0^3 \frac{d}{dt} \, dx \, dy = 0,
\]

this is impossible.
Problem 2a, alternate solution:

Use the law of conservation of energy:

\[\frac{d}{dt} \int_0^1 \int_0^2 e \, dx \, dy = - \int_{\partial \Omega} \phi \cdot \mathbf{n} \, dS. \]

Since \(e = c_p u \) and \(\phi = -K_0 \nabla u \), this gives

\[\frac{d}{dt} \int_0^1 \int_0^2 c_p u \, dx \, dy = K_0 \int_{\partial \Omega} \phi \cdot \mathbf{n} \, dS, \]

and so

\[\frac{d}{dt} \int_0^1 \int_0^2 u \, dx \, dy = \frac{K_0}{c_p} \int_{\partial \Omega} \phi \cdot \mathbf{n} \, dS = k \int_{\partial \Omega} \phi \cdot \mathbf{n} \, dS. \]

In this problem, \(\frac{d}{dt} u = k \nabla^2 u = \nabla^2 u \), so \(k = 1 \). Therefore

\[\frac{d}{dt} \int_0^1 \int_0^2 u \, dx \, dy = \int_{\partial \Omega} \phi \cdot \mathbf{n} \, dS. \]

From here we proceed as in the solution on the preceding page: we use the boundary conditions on \(u \) to find that \(\int_{\partial \Omega} \phi \cdot \mathbf{n} \, dS = -\frac{9}{2} \), so

\[\frac{d}{dt} \int_0^1 \int_0^2 u \, dx \, dy = -\frac{9}{2}. \]
3. (25 points) Consider the problem of solving Laplace’s equation inside a 60° wedge of radius \(a \), subject to the boundary conditions

\[
 u(r, 0) = 0, \quad u(r, \frac{\pi}{3}) = 0, \quad u(a, \theta) = f(\theta),
\]

and the condition that \(u \) remain bounded near \(r = 0 \).

a. Separated solutions of Laplace’s equations in polar coordinates have the form

\[
 u(r, \theta) = G(r)\phi(\theta),
\]

where \(\frac{d^2\phi}{d\theta^2} = -\lambda \phi \). Given that \(u \) satisfies \(u(r, 0) = 0 \) and \(u(r, \frac{\pi}{3}) = 0 \), find the eigenvalues \(\lambda \) and corresponding eigenfunctions \(\phi(\theta) \). You may assume \(\lambda > 0 \).

Since \(u(r, 0) = u(r, \frac{\pi}{3}) = 0 \), then \(\phi(\theta) = A \cos(\sqrt{\lambda} \, \theta) + B \sin(\sqrt{\lambda} \, \theta) \).

If \(\phi(0) = \phi(\frac{\pi}{3}) = 0 \), then \(\phi(0) = \phi(\frac{\pi}{3}) = 0 \). But

\[
 \phi(0) = 0 \Rightarrow 0 = A \Rightarrow \phi(\theta) = B \sin(\sqrt{\lambda} \, \theta),
\]

and

\[
 \phi(\frac{\pi}{3}) = 0 \Rightarrow 0 = B \sin(\sqrt{\lambda} \, \frac{\pi}{3}).
\]

For an eigenvalue we must have

\[
 \sin(\sqrt{\lambda} \, \frac{\pi}{3}) = 0; \quad \text{so} \quad \sqrt{\lambda} \, \frac{\pi}{3} = n\pi \quad (n = 1, 2, 3, \ldots); \quad \text{so} \quad \sqrt{\lambda} = 3n \quad \text{or} \quad \lambda = (3n)^2.
\]

Then \(\phi(\theta) = \sin(3n\theta) \).

b. The equation for \(G(r) \) is \(r^2\frac{d^2G}{dr^2} + r\frac{dG}{dr} - \lambda G = 0 \), which has solutions \(G = r^{3n} \) and \(G = r^{-3n} \). Which of these solutions do we use in this problem, and why?

Here \(\sqrt{\lambda} = 3n \) and the solutions are \(G = r^{3n} \) and \(G = r^{-3n} \). But \(u = G \cdot \phi \) must remain bounded near \(r = 0 \). Since \(r^{3n} \) remains bounded near \(r = 0 \) and \(r^{-3n} \) does not, we use only the solution \(G = r^{3n} \).

c. Write the solution \(u \) of the boundary-value problem as a sum of separated solutions, and express the coefficients in terms of the function \(f(\theta) \).

Take \(u(r, \theta) = \sum_{n=1}^{\infty} B_n r^{3n} \sin(3n\theta) \), so

\[
 u(a, \theta) = \sum_{n=1}^{\infty} B_n a^{3n} \sin(3n\theta) = f(\theta), \quad \text{for} \quad 0 < \theta < \frac{\pi}{3}.
\]

Taking \(L = \frac{\pi}{3} \), we see that \(\frac{n\pi}{L} \theta = 3n\theta \), so the series for \(f(\theta) \) can be rewritten as

\[
 u(a, \theta) = \sum_{n=1}^{\infty} B_n a^{3n} \sin(n\pi \theta) = f(\theta), \quad \text{for} \quad 0 < \theta < L.
\]

It is a Fourier sine series for \(f(\theta) \) on \([0, L]\), so form the formula for coefficients of a Fourier sine series, we get

\[
 B_n a^{3n} = \frac{2}{L} \int_{0}^{L} f(\omega) \sin(n\pi \omega) \, d\omega
\]

or

\[
 B_n = \frac{2}{(m\pi)a^{3n}} \int_{m\pi/3}^{\pi/3} f(\omega) \sin(3n\omega) \, d\omega.
\]
4. (30 points) Consider the function \(f(x) \) defined on \([0, \pi]\) by

\[
f(x) = \begin{cases}
1 & \text{for } 0 \leq x \leq \frac{\pi}{2} \\
0 & \text{for } \frac{\pi}{2} \leq x \leq \pi.
\end{cases}
\]

a. Find the coefficients of the Fourier cosine series for \(f \) on \([0, \pi]\). Write out the first three non-zero terms of the series.

\[
A_0 = \frac{1}{\pi} \int_0^\pi f(x) \, dx = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} 1 \, dx = \frac{1}{\pi} \cdot \frac{\pi}{2} = \frac{1}{2}.
\]

For \(n \geq 1 \), \(A_n = \frac{2}{\pi} \int_0^\pi f(x) \cos(nx) \, dx = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \cos(nx) \, dx = \frac{2}{\pi} \left[\frac{\sin(nx)}{n} \right]_0^{\frac{\pi}{2}} = \frac{2}{\pi n} \sin \left(\frac{n\pi}{2} \right).
\]

Thus \(A_1 = \frac{2}{\pi} \), \(A_2 = 0 \), \(A_3 = -\frac{2}{3\pi} \), \(A_4 = 0 \), etc.

We have

\[
f(x) \sim A_0 + \sum_{n=1}^{\infty} A_n \cos(nx) = \frac{1}{2} + \frac{2}{\pi} \cos x - \frac{2}{3\pi} \cos 3x + \ldots
\]

b. Sketch the graph of the function to which the series in part a converges. Show the function on at least the interval \([-2\pi, 2\pi]\). Use an \(\times \) to mark the values of the function at the points where it is discontinuous.

(The series converges to the \underline{even extension} of \(f \) which is \underline{periodic} of \underline{period} \(2\pi \).)

\(\times \)'s in correct spots: \(3\) p.t. \(4\) p.t