Syllabus for M.A. Comprehensive/Ph.D. Qualifying Exam in Analysis May/August 2006 John Albert

- 1. Topology of \mathbf{R}^n , uniform continuity, uniform convergence, the Riemann integral.
- 2. Functions of bounded variation, Jordan's theorem, the Riemann-Stieltjes integral.
- **3.** Lebesgue outer measure on \mathbb{R}^n , sets of measure zero, the Cantor set and Cantor-Lebesgue function, Lebesgue measurable sets and Lebesgue measure, nonmeasurable sets.
- 4. Lebesgue measurable functions, Egorov's theorem, Lusin's theorem, convergence in measure.
- 5. Definition of Lebesgue integral, Tchebyshev's inequality, Fatou's lemma, Monotone Convergence Theorem, Dominated Convergence Theorem, expression of Lebesgue integral as Riemann-Stieltjes integral, equality of Lebesgue integral and Riemann integral for Riemann integrable functions, characterization of Riemann integrable functions.
- **6.** Fubini's Theorem and Tonelli's Theorem on \mathbf{R}^n .
- 7. Vitali covering lemmas, Hardy-Littlewood maximal function, Lebesgue's theorem on derivative of indefinite integral in \mathbb{R}^n , derivatives of monotone functions, absolutely continuous and singular functions.
- 8. L^p and l^p spaces, Young's inequality, Hölder's inequality, Minkowski's inequality, metric spaces and Banach spaces, separability of L^p , Hilbert spaces, complete orthonormal bases for L^2 , Bessel's inequality, Parseval's formula, Riesz-Fischer theorem on isometry between L^2 and l^2 .
- 9. σ -algebras and measure spaces, additive set functions and measures, Jordan decomposition of additive set functions, integration with respect to a measure, absolutely continuous and singular set functions and measures.