## Theoretical underpinnings of differential calculus

Intermediate Value Theorem: Suppose $f(x)$ is continuous at every point of a closed interval $[a, b]$, and $f(a)$ is positive and $f(b)$ is negative. Then there is some point in between $a$ and $b$ where $f$ takes the value zero; i.e., there exists some $c$ in $[a, b]$ such that $f(c)=0$.

Extreme Value Theorem: Suppose $f(x)$ is continuous at every point of a closed interval $[a, b]$. Then there is some point in between $a$ and $b$ where $f$ takes its absolute maximum value over all of $[a, b]$. That is, there exists some $c$ in $[a, b]$ such that $f(c)$ is greater than or equal to $f(x)$ for all other values of $x$ in $[a, b]$. Similarly, there is some point in between $a$ and $b$ where $f$ takes its absolute minimum value over all of $[a, b]$. That is, there exists some $d$ in $[a, b]$ such that $f(d)$ is less than or equal to $f(x)$ for all other values of $x$ in $[a, b]$.

Theorem (called "Fermat's Theorem" in our text): Suppose $f$ has a local extremum (either a local maximum or a local minimum) at some point. Then, if $f$ is differentiable at that point, the derivative of $f$ must be zero there. That is, if $f$ is differentiable at $c$ and has either a local maximum or a local minimum at $c$, then $f^{\prime}(c)$ has to equal zero.

Note: The converse to Fermat's Theorem is not true! It is possible for the derivative of $f$ to equal zero at a point without there being a local extremum of $f$ at that point.

Mean Value Theorem: Suppose $f(x)$ is continuous at every point of a closed interval $[a, b]$, and differentiable at every point of the interior interval $(a, b)$. Then there is some point in between $a$ and $b$ where the slope of the graph of $f$ is equal to the slope of the line connecting the points on the graph of $f$ where $x=a$ and $x=b$. That is, there exists some $c$ in $[a, b]$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Rolle's Theorem: (This is a special case of the Mean Value Theorem.) Suppose $f(x)$ is continuous at every point of a closed interval $[a, b]$, and differentiable at every point of the interior interval $(a, b)$. Suppose $f(a)=0$ and $f(b)=0$. There there is some point in between $a$ and $b$ where the derivative of $f$ is zero. That is, there exists some $c$ in $[a, b]$ such that $f^{\prime}(c)=0$.

