Math 4513 Spring 2008

Assignment 4

(More problems taken from Ravi Vakil's excellent problem-solving website.)

1. The sequence q_{1}, q_{2}, \ldots satisfies $q_{n}=3 q_{n-2}-2 q_{n-3}$, and $q_{0}=0, q_{1}=3, q_{2}=11$. Find a general formula for q_{n}.
2. What is $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)^{n}$? (Prove your answer.)
3. Find a recurrence relation satisfied by $f_{n}=3^{n}+4^{n+1}$.
4. A gambling student tosses a fair coin and scores one point for each head that turns up and two points for each tail. Prove that the probability of the student scoring exactly n points at some time in a sequence of n tosses is $\left(2+(-1 / 2)^{n}\right) / 3$. (Hint: Let P_{n} denote the probability of scoring exactly n points at some time. Express P_{n} in terms of P_{n-1}, or in terms of P_{n-1} and P_{n-2}. Use this recurrence relation to given an inductive proof. Even better hint: you've been given the answer, so reverse-engineer the recurrence relation, and then try to prove it.)
5. Let F_{n} stand for the nth Fibonacci number, with the subscripts chosen so that we start with $F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3$, and so on. Use induction to show that for every n, both the equations

$$
F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}
$$

and

$$
F_{n+1}^{2}+2 F_{n} F_{n+1}=F_{2 n+2}
$$

hold.
(We had earlier the problem of proving just the first of these two equations. I think you'll find the problem of proving both of them to be much easier than the problem of proving just the first one!)

