Math 4513

- 1. a. Show that if a number n is not divisible by 3 then n^2 is also not divisible by 3.
 - b. Use part a to show that $\sqrt{3}$ is irrational; i.e., there do not exist numbers m and n such that $3 = m^2/n^2$.
- **2.** The Fibonacci numbers are defined by: $F_1=1$, $F_2=1$, and $F_{n+2}=F_{n+1}+F_n$ for all $n\geq 1$. The first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
 - a. Use the Euclidean algorithm to prove that the greatest common divisor of any two consecutive Fibonacci numbers is 1.
 - b. Use the Euclidean algorithm to find integers x and y such that 34x + 21y = 1.
- 3. Use the fundamental theorem of arithmetic (i.e., the theorem on unique prime factorization) to prove that
 - a. $\sqrt{6}$ is irrational.
 - b. $\sqrt[3]{2}$ is irrational.