Let L_{n} stand for the maximum number of regions obtained when the plane is cut by n lines, E_{n} stand for the maximum number of regions obtained when space is cut by n planes, and P_{n} stand for the maximum number of regions (segments) obtained when a line is cut by n points. Obviously, P_{n} is equal to $n+1$. We arrived at some values of L_{n} and E_{n} in class, which are summarized in the table below:

n	P_{n}	L_{n}	E_{n}
0	1	1	1
1	2	2	2
2	3	4	4
3	4	7	8
4	5	11	15
5	6	16	

This table led us to a conjecture a couple of recurrence relations for the sequences L_{n} and E_{n}. These recurrence relations are equations relating given terms L_{n} and E_{n} in the sequences to preceding terms L_{n-1} and E_{n-1}.

We also surmised that the values in the above table are connected to the values in the following table, which is known as Pascal's triangle:

n	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	$\binom{n}{3}$	\ldots
0	1	0	0	0	\ldots
1	1	1	0	0	\ldots
2	1	2	1	0	\ldots
3	1	3	3	1	\ldots
4	1	4	6	4	\ldots
5	1	5	10	10	\ldots

(You may remember from one of your previous math courses that there are simple formulas for the columns in Pascal's triangle. The first column is given by the formula $\binom{n}{0}=1$, the second column is given by $\binom{n}{1}=n$, the third by $\binom{n}{2}=\frac{n(n-1)}{2}$, the fourth by $\binom{n}{3}=\frac{n(n-1)(n-2)}{2 \cdot 3}$, and so on.)

1. Write down a recurrence relation for L_{n}, and prove it using geometric arguments.
2. Guess a formula for L_{n}. (Hint: use the connection between L_{n} and Pascal's triangle). Prove that this guess is correct, using induction and the recurrence relation you gave in problem 1.
3. Write down a recurrence relation for E_{n}, and prove it using geometric arguments.
4. Guess a formula for E_{n}. (Again, you can find the formula by looking at the connection between E_{n} and Pascal's triangle.) Prove it using induction and the recurrence relation you gave in problem 3.
