Definition. We say that a function $f: \mathbf{R} \rightarrow \mathbf{R}$ is additive if, for all $x \in \mathbf{R}$ and all $y \in \mathbf{R}$,

$$
f(x+y)=f(x)+f(y)
$$

Lemma 1. Suppose $\phi: \mathbf{R} \rightarrow \mathbf{R}$ is additive and suppose ϕ is bounded on \mathbf{R}. Then $\phi(x)=0$ for all $x \in \mathbf{R}$.

Proof. By contradiction. Suppose $\phi\left(x_{0}\right) \neq 0$ for some $x_{0} \in \mathbf{R}$. Since ϕ is additive, it follows by induction that $\phi\left(n x_{0}\right)=n \phi\left(x_{0}\right)$ for all $n \in \mathbf{N}$. Since ϕ is bounded, there exists $M \in \mathbf{R}$ such that $|\phi(x)| \leq M$ for all $x \in \mathbf{R}$. Therefore $\left|\phi\left(n x_{0}\right)\right|=\left|n \phi\left(x_{0}\right)\right| \leq M$ for all $n \in \mathbf{N}$. Hence $n \leq M /\left|\phi\left(x_{0}\right)\right|$ for all $n \in \mathbf{N}$. This contradicts the Archimedean property of the real numbers.

Definition. Suppose $\phi: \mathbf{R} \rightarrow \mathbf{R}$, and suppose $T>0$. We say ϕ is periodic with period T if, for all $x \in \mathbf{R}$,

$$
\phi(x+T)=\phi(x)
$$

Lemma 2. Suppose $\phi: \mathbf{R} \rightarrow \mathbf{R}$ is periodic with period T, and suppose ϕ is bounded on the interval $[0, T]$. Then ϕ is bounded on all of \mathbf{R}.

Proof. This is obvious geometrically: since ϕ is periodic of period T, the graph of ϕ on \mathbf{R} consists of the graph of ϕ on $[0, T]$ repeated over and over on the intervals $[T, 2 T],[2 T, 3 T],[3 T, 4 T]$, etc., as well as on the intervals $[0,-T],[-2 T,-T],[-3 T,-2 T]$, etc. (Think of the graph of the function $\sin (x)$, which is periodic with period $T=2 \pi$.) If ϕ is bounded on $[0, T]$ by M, it must therefore be bounded by M on all the other intervals as well.

If you want to write a more rigorous proof, you would first show that for every $x \in \mathbf{R}$, there exists an integer m such that $x+m T$ is in [$0, T$], then use the periodicity of ϕ to deduce that $\phi(x)=\phi(x+m T)$, and so conclude that $\phi(x)$ is bounded by the same number M that bounds ϕ on $[0, T]$. This wouldn't be hard to do, but I imagine you don't feel the need of doing it, since the geometric proof has already convinced you.

Theorem. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is additive and suppose there exists some $T>0$ such that f is bounded on $[0, T]$. Then there exists a number A such that $f(x)=A x$ for all $x \in \mathbf{R}$.

Proof. Define $A=f(T) / T$, and define

$$
\phi(x)=f(x)-A x
$$

for all $x \in \mathbf{R}$. For all $x \in \mathbf{R}$ and all $y \in \mathbf{R}$ we have

$$
\phi(x+y)=f(x+y)-A(x+y)=f(x)+f(y)-A x-A y=(f(x)-A x)+(f(y)-A y)=\phi(x)+\phi(y)
$$

This proves that ϕ is additive. Moreover, since $f(x)$ and $A x$ are both bounded functions on $[0, T]$, then their difference $\phi(x)$ is also bounded on $[0, T]$.

On the other hand, notice that $\phi(T)=f(T)-A T=0$, by definition of A. Hence, for all $x \in \mathbf{R}$ we have, since ϕ is additive,

$$
\phi(x+T)=\phi(x)+\phi(T)=\phi(x)+0=\phi(x) .
$$

This shows that ϕ is periodic on \mathbf{R}, and since we already know it is bounded on $[0, T]$, Lemma 2 tells us that ϕ is bounded on all of \mathbf{R}. Then Lemma 1 tells us that $\phi(x)=0$ for all $x \in \mathbf{R}$. From the definition of ϕ it follows that $f(x)-A x=0$ for all $x \in \mathbf{R}$, which is what we wanted to prove.
(This proof was taken from the article The linear functional equation by G.S. Young, in The American Mathematical Monthly, Vol. 65 (1958), pp. 37-38.)

