Definition. We say that a function $f : \mathbf{R} \to \mathbf{R}$ is *additive* if, for all $x \in \mathbf{R}$ and all $y \in \mathbf{R}$,

$$f(x+y) = f(x) + f(y).$$

Lemma 1. Suppose $\phi : \mathbf{R} \to \mathbf{R}$ is additive and suppose ϕ is bounded on \mathbf{R} . Then $\phi(x) = 0$ for all $x \in \mathbf{R}$.

Proof. By contradiction. Suppose $\phi(x_0) \neq 0$ for some $x_0 \in \mathbf{R}$. Since ϕ is additive, it follows by induction that $\phi(nx_0) = n\phi(x_0)$ for all $n \in \mathbf{N}$. Since ϕ is bounded, there exists $M \in \mathbf{R}$ such that $|\phi(x)| \leq M$ for all $x \in \mathbf{R}$. Therefore $|\phi(nx_0)| = |n\phi(x_0)| \leq M$ for all $n \in \mathbf{N}$. Hence $n \leq M/|\phi(x_0)|$ for all $n \in \mathbf{N}$. This contradicts the Archimedean property of the real numbers.

Definition. Suppose $\phi : \mathbf{R} \to \mathbf{R}$, and suppose T > 0. We say ϕ is *periodic with period* T if, for all $x \in \mathbf{R}$,

$$\phi(x+T) = \phi(x).$$

Lemma 2. Suppose $\phi : \mathbf{R} \to \mathbf{R}$ is periodic with period T, and suppose ϕ is bounded on the interval [0, T]. Then ϕ is bounded on all of \mathbf{R} .

Proof. This is obvious geometrically: since ϕ is periodic of period T, the graph of ϕ on \mathbf{R} consists of the graph of ϕ on [0,T] repeated over and over on the intervals [T,2T], [2T,3T], [3T,4T], etc., as well as on the intervals [0,-T], [-2T,-T], [-3T,-2T], etc. (Think of the graph of the function $\sin(x)$, which is periodic with period $T = 2\pi$.) If ϕ is bounded on [0,T] by M, it must therefore be bounded by M on all the other intervals as well.

If you want to write a more rigorous proof, you would first show that for every $x \in \mathbf{R}$, there exists an integer m such that x + mT is in [0, T], then use the periodicity of ϕ to deduce that $\phi(x) = \phi(x + mT)$, and so conclude that $\phi(x)$ is bounded by the same number M that bounds ϕ on [0, T]. This wouldn't be hard to do, but I imagine you don't feel the need of doing it, since the geometric proof has already convinced you.

Theorem. Suppose $f : \mathbf{R} \to \mathbf{R}$ is additive and suppose there exists some T > 0 such that f is bounded on [0, T]. Then there exists a number A such that f(x) = Ax for all $x \in \mathbf{R}$.

Proof. Define A = f(T)/T, and define

$$\phi(x) = f(x) - Ax$$

for all $x \in \mathbf{R}$. For all $x \in \mathbf{R}$ and all $y \in \mathbf{R}$ we have

$$\phi(x+y) = f(x+y) - A(x+y) = f(x) + f(y) - Ax - Ay = (f(x) - Ax) + (f(y) - Ay) = \phi(x) + \phi(y).$$

This proves that ϕ is additive. Moreover, since f(x) and Ax are both bounded functions on [0, T], then their difference $\phi(x)$ is also bounded on [0, T].

On the other hand, notice that $\phi(T) = f(T) - AT = 0$, by definition of A. Hence, for all $x \in \mathbf{R}$ we have, since ϕ is additive,

$$\phi(x+T) = \phi(x) + \phi(T) = \phi(x) + 0 = \phi(x).$$

This shows that ϕ is periodic on **R**, and since we already know it is bounded on [0, T], Lemma 2 tells us that ϕ is bounded on all of **R**. Then Lemma 1 tells us that $\phi(x) = 0$ for all $x \in \mathbf{R}$. From the definition of ϕ it follows that f(x) - Ax = 0 for all $x \in \mathbf{R}$, which is what we wanted to prove.

(This proof was taken from the article *The linear functional equation* by G.S. Young, in *The American Mathematical Monthly*, Vol. 65 (1958), pp. 37–38.)