Math 6473 Assignment 3

1. Show that the weak topology on \mathbf{C}^n is the same as the norm topology.

2. Let C[a,b] be the Banach space of continuous functions on the finite interval [a,b] in **R**, with the supremum norm. Show that C[a,b] is separable.

3. Let M[a, b] be the Banach space of all (real-valued) additive set functions μ defined on the σ -algebra of Borel subsets of the finite interval [a, b] in **R**, with norm given by

$$\|\mu\| = |\mu|([a,b]) = \int_{[a,b]} d|\mu|,$$

where $|\mu|$ is the total variation of μ . Suppose $\{\mu_n\}$ is a sequence in M[a, b] such that $\|\mu_n\| \leq 1$ for all $n \in \mathbb{N}$. Show that there exists a subsequence $\{\mu_{n_k}\}$ of $\{\mu_n\}$ and an additive set function $\mu_0 \in M[a, b]$, with $\|\mu_0\| \leq 1$, such that

$$\lim_{n \to \infty} \int_{[a,b]} f \ d\mu_n = \int_{[a,b]} f \ d\mu_0$$

for every continuous function f on [a, b]. (Note: a version of this statement is still true for complex-valued measures on [a, b], once you've defined the total variation of a complex measure and the integral of a continuous function with respect to a complex measure.)

4. Let X be a Banach space. Show that if $\{x_n\}$ is a sequence in X that converges weakly, then $\{\|x_n\|_X\}$ is bounded. (Hint: apply the Uniform Boundedness Principle to the functionals $j(x_n)$ in X^{**} .)

5.

(a) Show that the sequence $\{e_n\}$ converges weakly to zero in ℓ^2 . (Here e_n denotes the sequence with 1 as the *n*th element and zeroes elsewhere.)

(b) Find a sequence $\{f_n\}$ in C[0,1] such that $||f_n|| = 1$ for all $n \in \mathbb{N}$, and $\{f_n\}$ converges weakly to 0.

Extra. Here are a couple more problems which are not assigned, but which I recommend as good exercises. They are not hard.

Show that if X is a reflexive Banach space, then for every bounded linear functional F on X, there exists $x \in X$ such that ||x|| = 1 and F(x) = ||F||.

Show that C[0,1] with the supremum norm is not a reflexive Banach space.