
Math 6473
Assignment 2

1. Give an example of a bounded linear map A from a normed space X to the complex numbers C such
that there does not exist any x in X satisfying |Ax| = ∥A∥ ∥x∥.

2. Suppose X is a normed space, Y is a Banach space, and Z is a dense subspace of X. Show that if
A : Z → Y is bounded and linear, then there exists a unique bounded linear map B : X → Y such that
Bx = Ax for all x ∈ Z.

3. Suppose X is a normed space, and A : X → C is linear. Define N(A) = {x ∈ X : Ax = 0}. Show
that A is bounded if and only if N(A) is closed.

4. This exercise shows that completeness is an essential hypothesis of the uniform boundedness principle.
Let X be the space of all sequences {xn} in ℓ∞ such that there exists N ∈ N so that xn = 0 for all n ≥ N .

(a) Show that X is a subspace of ℓ∞, but is not complete with respect to the ℓ∞ norm.

(b) For each k ∈ N, define the map Tk : X → C by Tk({xn}) = kxk. Show that the collection
F = {Tk}k∈N is pointwise bounded, but is not uniformly bounded.

5. Let X be as in problem 4 and define T : X → X by (T (xn))n = (1/n)xn. Show that T is bounded,
one-to-one, and onto, but T−1 is not bounded. Why does this not contradict the open mapping theorem?

6. Suppose X and Y are Banach spaces and {An} is a sequence of bounded linear operators from X
to Y . We say An converges strongly to the bounded operator A : X → Y if, for every x ∈ X, we have
Anx → Ax.

(a) Prove that if An converges in the norm of B(X,Y ) to A (that is, ∥An −A∥ → 0) then An converges
strongly to A.

(b) Give an example showing that a sequence of operators An can converge strongly to an operator A,
without converging in norm to A.

(c) Show that if An converges strongly to A, then An is uniformly bounded: that is, there exists M < ∞
such that ∥An∥ ≤ M for all n. (Hint: use the Uniform Boundedness Principle.)

Extra. This problem is not part of the assignment, it’s just here in case you feel like doing it on your
own. Its purpose is to show that, unlike finite-dimensional vector spaces, infinite-dimensional vector spaces
never have unique Banach space topologies. It is taken from Robert E. Megginson’s “Introduction to Banach
Space Theory”, and is a simplification and generalization of a construction we did in class for ℓ1.

(a) Suppose (X, ∥ · ∥) is an infinite-dimensional normed space. Construct an unbounded one-to-one
linear operator T from (X, ∥ · ∥) onto itself. (We showed how to construct an unbounded linear operator
from X to C in class, using a Hamel basis of X. A similar construction works here.)

(b) Let ∥x∥T = ∥Tx∥ whenever x ∈ X. Show that ∥ · ∥T is a norm, that T is an isometric isomorphism
from (X, ∥ · ∥T ) onto (X, ∥ · ∥), and that ∥ · ∥T is a Banach norm if and only if ∥ · ∥ is a Banach norm.
(An “isometric isomorphism” from X to Y is a map T which is linear, one-to-one, and onto, and satisfies
∥Tx∥Y = ∥x∥X for all x ∈ X. In this case, the fact that T is an isometric isomorphism is obvious.)

(c) Show that the topologies induced by ∥ · ∥ and ∥ · ∥T are different.


