Math 6473 Assignment 2

- 1. Give an example of a bounded linear map A from a normed space X to the complex numbers C such that there does not exist any x in X satisfying |Ax| = ||A|| ||x||.
- **2.** Suppose X is a normed space, Y is a Banach space, and Z is a dense subspace of X. Show that if $A:Z\to Y$ is bounded and linear, then there exists a unique bounded linear map $B:X\to Y$ such that Bx=Ax for all $x\in Z$.
- **3.** Suppose X is a normed space, and $A: X \to \mathbf{C}$ is linear. Define $N(A) = \{x \in X : Ax = 0\}$. Show that A is bounded if and only if N(A) is closed.
- **4.** This exercise shows that completeness is an essential hypothesis of the uniform boundedness principle. Let X be the space of all sequences $\{x_n\}$ in ℓ_{∞} such that there exists $N \in \mathbb{N}$ so that $x_n = 0$ for all $n \geq N$.
 - (a) Show that X is a subspace of ℓ_{∞} , but is not complete with respect to the ℓ_{∞} norm.
- (b) For each $k \in \mathbb{N}$, define the map $T_k : X \to \mathbb{C}$ by $T_k(\{x_n\}) = kx_k$. Show that the collection $\mathcal{F} = \{T_k\}_{k \in \mathbb{N}}$ is pointwise bounded, but is not uniformly bounded.
- **5.** Let X be as in problem **4** and define $T: X \to X$ by $(T(x_n))_n = (1/n)x_n$. Show that T is bounded, one-to-one, and onto, but T^{-1} is not bounded. Why does this not contradict the open mapping theorem?
- **6.** Suppose X and Y are Banach spaces and $\{A_n\}$ is a sequence of bounded linear operators from X to Y. We say A_n converges strongly to the bounded operator $A: X \to Y$ if, for every $x \in X$, we have $A_n x \to Ax$.
- (a) Prove that if A_n converges in the norm of B(X,Y) to A (that is, $||A_n A|| \to 0$) then A_n converges strongly to A.
- (b) Give an example showing that a sequence of operators A_n can converge strongly to an operator A, without converging in norm to A.
- (c) Show that if A_n converges strongly to A, then A_n is uniformly bounded: that is, there exists $M < \infty$ such that $||A_n|| \le M$ for all n. (Hint: use the Uniform Boundedness Principle.)
- **Extra.** This problem is not part of the assignment, it's just here in case you feel like doing it on your own. Its purpose is to show that, unlike finite-dimensional vector spaces, infinite-dimensional vector spaces never have unique Banach space topologies. It is taken from Robert E. Megginson's "Introduction to Banach Space Theory", and is a simplification and generalization of a construction we did in class for ℓ_1 .
- (a) Suppose $(X, \|\cdot\|)$ is an infinite-dimensional normed space. Construct an unbounded one-to-one linear operator T from $(X, \|\cdot\|)$ onto itself. (We showed how to construct an unbounded linear operator from X to \mathbb{C} in class, using a Hamel basis of X. A similar construction works here.)
- (b) Let $||x||_T = ||Tx||$ whenever $x \in X$. Show that $||\cdot||_T$ is a norm, that T is an isometric isomorphism from $(X, ||\cdot||_T)$ onto $(X, ||\cdot||)$, and that $||\cdot||_T$ is a Banach norm if and only if $||\cdot||$ is a Banach norm. (An "isometric isomorphism" from X to Y is a map T which is linear, one-to-one, and onto, and satisfies $||Tx||_Y = ||x||_X$ for all $x \in X$. In this case, the fact that T is an isometric isomorphism is obvious.)
 - (c) Show that the topologies induced by $\|\cdot\|$ and $\|\cdot\|_T$ are different.