1. Give an example of a bounded linear map A from a normed space X to the complex numbers C such that there does not exist any x in X satisfying $|Ax| = \|A\| \|x\|$.

2. Suppose X is a normed space, Y is a Banach space, and Z is a dense subspace of X. Show that if $A : Z \to Y$ is bounded and linear, then there exists a unique bounded linear map $B : X \to Y$ such that $Bx = Ax$ for all $x \in Z$.

3. Suppose X is a normed space, and $A : X \to C$ is linear. Define $N(A) = \{x \in X : Ax = 0\}$. Show that A is bounded if and only if $N(A)$ is closed.

4. This exercise shows that completeness is an essential hypothesis of the uniform boundedness principle. Let X be the space of all sequences $\{x_n\}$ in ℓ_∞ such that there exists $N \in \mathbb{N}$ so that $x_n = 0$ for all $n \geq N$.

 (a) Show that X is a subspace of ℓ_∞, but is not complete with respect to the ℓ_∞ norm.

 (b) For each $k \in \mathbb{N}$, define the map $T_k : X \to C$ by $T_k(\{x_n\}) = kx_k$. Show that the collection $\mathcal{F} = \{T_k\}_{k \in \mathbb{N}}$ is pointwise bounded, but is not uniformly bounded.

5. Let X be as in problem 4 and define $T : X \to X$ by $(T(x_n))_n = (1/n)x_n$. Show that T is bounded, one-to-one, and onto, but T^{-1} is not bounded. Why does this not contradict the open mapping theorem?

6. Suppose X and Y are Banach spaces and $\{A_n\}$ is a sequence of bounded linear operators from X to Y. We say A_n converges strongly to the bounded operator $A : X \to Y$ if, for every $x \in X$, we have $A_nx \to Ax$.

 (a) Prove that if A_n converges in the norm of $B(X, Y)$ to A (that is, $\|A_n - A\| \to 0$) then A_n converges strongly to A.

 (b) Give an example showing that a sequence of operators A_n can converge strongly to an operator A, without converging in norm to A.

 (c) Show that if A_n converges strongly to A, then A_n is uniformly bounded: that is, there exists $M < \infty$ such that $\|A_n\| \leq M$ for all n. (Hint: use the Uniform Boundedness Principle.)

Extra. This problem is not part of the assignment, it’s just here in case you feel like doing it on your own. Its purpose is to show that, unlike finite-dimensional vector spaces, infinite-dimensional vector spaces never have unique Banach space topologies. It is taken from Robert E. Megginson’s “Introduction to Banach Space Theory”, and is a simplification and generalization of a construction we did in class for ℓ_1.

 (a) Suppose $(X, \| \cdot \|)$ is an infinite-dimensional normed space. Construct an unbounded one-to-one linear operator T from $(X, \| \cdot \|)$ onto itself. (We showed how to construct an unbounded linear operator from X to C in class, using a Hamel basis of X. A similar construction works here.)

 (b) Let $\|x\|_T = \|Tx\|$ whenever $x \in X$. Show that $\| \cdot \|_T$ is a norm, that T is an isometric isomorphism from $(X, \| \cdot \|_T)$ onto $(X, \| \cdot \|)$, and that $\| \cdot \|_T$ is a Banach norm if and only if $\| \cdot \|_T$ is a Banach norm. (An “isometric isomorphism” from X to Y is a map T which is linear, one-to-one, and onto, and satisfies $\|Tx\|_Y = \|x\|_X$ for all $x \in X$. In this case, the fact that T is an isometric isomorphism is obvious.)

 (c) Show that the topologies induced by $\| \cdot \|$ and $\| \cdot \|_T$ are different.