Math 5463 — Final Exam

- 1. Prove Hölder's inequality in the case when $1 \le p < \infty$. You may assume Young's inequality.
- 2. Prove that if the function f, defined on \mathbb{R}^n , is in L^1 , then its Hardy-Littlewood maximal function f^* is in weak L^1 .
- **3.** Prove that if f is absolutely continuous on [a, b], then f' exists a.e. in (a, b), and for all $x \in [a, b]$ we have

$$f(x) - f(a) = \int_a^x f'(t) dt.$$

4. Suppose K(x, y) is defined for $(x, y) \in \mathbf{R}^2$, and $K \in L^2(\mathbf{R}^2)$. Suppose $f \in L^2(\mathbf{R})$, and define g(x) for $x \in \mathbf{R}$ by

$$g(x) = \int_{-\infty}^{\infty} K(x, y) f(y) \, dy.$$

Prove that

$$||g||_{L^2(\mathbf{R})} \le ||K||_{L^2(\mathbf{R}^2)} ||f||_{L^2(\mathbf{R})}.$$

- 5. Prove that $f(x) = \sqrt{x}$ is absolutely continuous on [0, 1].
- **6.** Suppose $\{f_n\}$ is a sequence of functions in $L^p(\mathbf{R}^n)$ such that for all $g \in L^{p'}$,

$$\lim_{n \to \infty} \int_{\infty}^{\infty} f_n g \, dx = 0$$

Prove that f_n converges in measure to the zero function in L^p .

7. Suppose $\{\phi_k\}$ is an orthonormal basis for L^2 , and for $f \in L^2$ and $g \in L^2$, define $c_k = \langle f, \phi_k \rangle$ and $d_k = \langle g, \phi_k \rangle$. Show that

$$\langle f,g\rangle = \sum_k c_k \bar{d_k}.$$

(Hint: use Parseval's identity.)

8. Define the measure μ on the σ -algebra of Lebesgue measurable subsets of **R** by

$$\mu(E) = \begin{cases} 1 & \text{if } 0 \in E \\ 0 & \text{if } 0 \notin E. \end{cases}$$

- **a.** Evaluate (with proof) the integral $g(x) = \int_{-\infty}^{\infty} 1 \, d\mu$. (It has different values for different choices of x in **R**.)
- **b.** Answer the following questions, with proof.
- (i) Is g(x) of bounded variation on [-1, 1]?
- (*ii*) Is g(x) absolutely continuous on [-1, 1]?
- (*iii*) Is g(x) singular on [-1, 1]?