Math 5463 Test 2

- **1.** (25 points) Show that if f is absolutely continuous and singular on [a, b], then f is constant on [a, b].
- 2. (20 points) Suppose $\{\phi_k\}$ is an orthonormal set of functions in L^2 . For each $f \in L^2$ and $N \in \mathbf{N}$, define $s_N(f) = \sum_{k=1}^N \langle f, \phi_k \rangle \phi_k$. **a.** Prove that $\|f - s_N(f)\|^2 = \|f\|^2 - \sum_{k=1}^N |\langle f, \phi_k \rangle|^2$.
 - **b.** Deduce Bessel's inequality from part **a**.
- **3.** (20 points) Suppose H is a Hilbert space which contains an infinite orthonormal set $\{\phi_1, \phi_2, \phi_3, \ldots\}$. Let $S = \{x \in H : ||x|| = 1\}$.
 - **a.** Show that if x and y are in S then $||x y|| = \sqrt{2}$.
 - **b.** Let \mathcal{K} be the collection of all balls $B_{1/2}(x)$ of radius 1/2 in H with centers x in S. Show that there is no finite subcollection of \mathcal{K} which covers S.
- 4. (15 points) Let $f_N(x) = \sum_{k=1}^N \sin(kx)$ for $N \in \mathbb{N}$. Show that the sequence $\{f_N\}$ does not converge to a limit in $L^2[0, 2\pi]$.
- **5.** (20 points)
 - **a.** Suppose f is monotone and absolutely continuous on [a, b]. Show that if $E \subset [a, b]$ and |E| = 0, then |f(E)| = 0.
 - **b.** Suppose f is the Cantor-Lebesgue function on [0, 1]. Find a set $E \subset [0, 1]$ such that |E| = 0 and $|f(E)| \neq 0$.