Math 5463 Test 1

- 1. (20 points) Prove Minkowski's inequality for L^p , in the case when $1 \le p < \infty$. You may use Hölder's inequality.
- **2.** (20 points) Prove that L^p is complete, in the case when $1 \le p < \infty$.
- **3.** (20 points) Suppose $1 \le p < \infty$. A function f on E is said to be in weak L^p on E if there exists a constant C such that for all $\alpha > 0$, the set $\{x \in E : |f(x)| > \alpha\}$ has measure less than $C/(\alpha^p)$.
 - **a.** Prove that if $f \in L^p(E)$ then f is in weak L^p on E.
 - **b.** Let $E = (0, \infty)$ and define $f(x) = |x|^{-1/p}$ for $x \in E$. Show that f is in weak L^p on E but is not in $L^p(E)$.

4. (20 points)

a. Suppose f is continuous with compact support in **R**. Prove

$$\lim_{h \to \infty} \int_{-\infty}^{\infty} |f(xh)| \, dx = 0.$$

b. Prove that for all f in $L^1(\mathbf{R})$,

$$\lim_{h \to \infty} \int_{-\infty}^{\infty} |f(xh)| \, dx = 0.$$

(Hint: use part **a**.)

5. (20 points) Suppose $0 < r \le q < \infty$, and suppose $E \subset \mathbf{R}$, with $|E| < \infty$. Prove that for all $f \in L^q(E)$,

$$||f||_{L^{r}(E)} \leq ||f||_{L^{q}(E)} |E|^{\frac{1}{r} - \frac{1}{q}}.$$

(Hint: use Hölder's inequality.)