Math 5453 — Fall 2012 Exam 2

(Note: In doing these problems, you may cite any result that we have done in class, without having to prove it.)

- 1. Show that if f and g are integrable on \mathbb{R} , then $\max\{f,g\}$ is integrable on \mathbb{R} .
- **2.** Show that if f is integrable on $[0, \infty)$ then

$$\mathbf{a.} \lim_{n \to \infty} \int_0^\infty e^{-nx} f(x) \ dx = 0.$$

b.
$$\lim_{n \to \infty} \int_{n}^{\infty} f(x) \ dx = 0.$$

3. Suppose f is a non-negative function defined on a measurable set E. Prove that for every $\alpha > 0$,

$$m\left(\left\{x \in E : f(x) > \alpha\right\}\right) \le \frac{1}{\alpha^2} \int_E f^2 dx.$$

4. Let $\{f_n\}$ be a sequence of non-negative measurable functions on E such that $\int_E f_n(x) dx \le 1$ for all n. Show that

$$\sum_{n=1}^{\infty} \frac{f_n(x)}{2^n}$$

is finite for almost every $x \in E$. Carefully justify the steps in your proof!

5. Let $\{f_n\}$ be a sequence of measurable functions on [0,1], and let M>0 be such that $|f_n| \leq M$ on [0,1] for every n. Suppose that for every simple function h on [0,1],

$$\lim_{n \to \infty} \int_{[0,1]} h f_n \ dx = 0.$$

Prove that for every bounded measurable function g on [0,1],

$$\lim_{n \to \infty} \int_{[0,1]} g f_n \ dx = 0.$$