Math 5453 — Fall 2012 Exam 1

(Note: For these problems, you may cite any result that we have done in class, without having to prove it.)

1. If E_1 and E_2 are measurable sets, show that

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2).$$

- **2.** For k > 0 and $E \subseteq \mathbf{R}$, define $kE = \{y : y = kx, x \in E\}$. Show that $m^*(kE) = km^*(E)$.
- 3. Using the definition from problem 2,
 - **a.** Show that if H is a subset of **R** of type G_{δ} , then kH is also of type G_{δ} .
 - **b.** Show that if E is a measurable set, then kE is measurable. (Hint: use part **a** and problem **2**.)
- **4.** Show that there exist non-measurable sets A and B such that $A \cup B$ is measurable.
- **5.** Suppose f is a measurable function on a measurable set E.
 - **a.** Show that if f(x) > 0 for all $x \in E$, then 1/f is measurable on E.
 - **b.** Show that if $f(x) \neq 0$ for all $x \in E$, then 1/f is measurable on E.