Complex Analysis I Exam 2

1. Define $f: (0, \infty) \to \mathbf{R}$ by $f(x) = \sin(\log x)$.

a. Find the values of $x \in (0, \infty)$ at which f(x) = 0.

b. Use the result of part **a** to answer the question: can f be extended to an entire function on the complex plane?

2. Suppose f = u + iv is entire and there exists M > 0 such that $|u(z)| \le M$ for all $z \in \mathbb{C}$. Show that f is constant. Hint: apply Liouville's theorem to $\exp(f(z))$.

3. Suppose f is a holomorphic function on D(P,r), and f(P) = f'(P) = 0. Show that there exists M > 0 such that for all $z \in D(P,r)$,

$$|f(z)| \le M|z - P|^2.$$

4. Find two Laurent series for $f(z) = \frac{1}{z(1+z^2)}$ in powers of z, and specify where each one is valid.

5. Evaluate the integral $\int_C \frac{(3z+2)^2}{z(z-1)(2z+5)} dz$, where C is the circle $\{|z| = 2\}$, traversed counterclockwise.

6. Suppose $U \subseteq \mathbf{C}$ is open, and $\overline{D}(P,r) \subseteq U$. Let C be the circle $\{|z-P|=r\}$, with positive orientation.

a. Show that if $z \in D(P, r) \setminus \{P\}$, then

$$\int_C \frac{1}{(\zeta - P)(\zeta - z)} \, d\zeta = 0.$$

b. Show that if f(z) is a holomorphic function on U, then the function $g(z) = \frac{f(z) - f(P)}{z - P}$ is also holomorphic on U.

c. Show that if f and g are as in part **b**, then for all $z \in D(P, r) \setminus \{P\}$,

$$g(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - P)(\zeta - z)} d\zeta.$$