Complex Analysis I
 Exam 2

1. Define $f:(0, \infty) \rightarrow \mathbf{R}$ by $f(x)=\sin (\log x)$.
a. Find the values of $x \in(0, \infty)$ at which $f(x)=0$.
b. Use the result of part a to answer the question: can f be extended to an entire function on the complex plane?
2. Suppose $f=u+i v$ is entire and there exists $M>0$ such that $|u(z)| \leq M$ for all $z \in \mathbf{C}$. Show that f is constant. Hint: apply Liouville's theorem to $\exp (f(z))$.
3. Suppose f is a holomorphic function on $D(P, r)$, and $f(P)=f^{\prime}(P)=0$. Show that there exists $M>0$ such that for all $z \in D(P, r)$,

$$
|f(z)| \leq M|z-P|^{2}
$$

4. Find two Laurent series for $f(z)=\frac{1}{z\left(1+z^{2}\right)}$ in powers of z, and specify where each one is valid.
5. Evaluate the integral $\int_{C} \frac{(3 z+2)^{2}}{z(z-1)(2 z+5)} d z$, where C is the circle $\{|z|=2\}$, traversed counterclockwise.
6. Suppose $U \subseteq \mathbf{C}$ is open, and $\bar{D}(P, r) \subseteq U$. Let C be the circle $\{|z-P|=r\}$, with positive orientation.
a. Show that if $z \in D(P, r) \backslash\{P\}$, then

$$
\int_{C} \frac{1}{(\zeta-P)(\zeta-z)} d \zeta=0
$$

b. Show that if $f(z)$ is a holomorphic function on U, then the function $g(z)=$ $\frac{f(z)-f(P)}{z-P}$ is also holomorphic on U.
c. Show that if f and g are as in part \mathbf{b}, then for all $z \in D(P, r) \backslash\{P\}$,

$$
g(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-P)(\zeta-z)} d \zeta
$$

