Complex Analysis I Exam 1

1. Prove that if z and w are complex numbers with |z| = 1, then

$$\left|\frac{z-w}{1-\overline{z}w}\right| = 1.$$

- **2.** Prove that if f(z) is analytic, then $\overline{f(\overline{z})}$ is analytic.
- 3. Let f(z) = |z|² = x² + y².
 a. Show that f'(z) exists at z = 0.
 b. Show that f'(z) does not exist at any point z where z ≠ 0.

4. Show that if f is holomorphic on a connected set U and f(z) is real for all $z \in U$, then f is constant on U.

5. Let γ denote the circle $\{|z| = 1\}$, parameterized as a positively oriented simple closed curve.

a. Show that if z = x + iy and $z \in \gamma$, then $x = \frac{1}{2}\left(z + \frac{1}{z}\right)$.

b. Use the formula in part **a** to compute $\int_{\gamma} x \, dz$.

6. Let γ denote the circle $\{|z| = 2\}$, parameterized as a positively oriented simple closed curve.

a. Evaluate $\int_{\gamma} \frac{1}{z^2 - 1} dz$.

b. Suppose n is a positive integer, and evaluate $\int_{\gamma} \frac{e^z}{z^n} dz$. (You may assume that e^z is an entire function and $\frac{d}{dz}e^z = e^z$.)