Complex Analysis I
 Exam 1

1. Prove that if z and w are complex numbers with $|z|=1$, then

$$
\left|\frac{z-w}{1-\bar{z} w}\right|=1 .
$$

2. Prove that if $f(z)$ is analytic, then $\overline{f(\bar{z})}$ is analytic.
3. Let $f(z)=|z|^{2}=x^{2}+y^{2}$.
a. Show that $f^{\prime}(z)$ exists at $z=0$.
b. Show that $f^{\prime}(z)$ does not exist at any point z where $z \neq 0$.
4. Show that if f is holomorphic on a connected set U and $f(z)$ is real for all $z \in U$, then f is constant on U.
5. Let γ denote the circle $\{|z|=1\}$, parameterized as a positively oriented simple closed curve.
a. Show that if $z=x+i y$ and $z \in \gamma$, then $x=\frac{1}{2}\left(z+\frac{1}{z}\right)$.
b. Use the formula in part a to compute $\int_{\gamma} x d z$.
6. Let γ denote the circle $\{|z|=2\}$, parameterized as a positively oriented simple closed curve.
a. Evaluate $\int_{\gamma} \frac{1}{z^{2}-1} d z$.
b. Suppose n is a positive integer, and evaluate $\int_{\gamma} \frac{e^{z}}{z^{n}} d z$. (You may assume that e^{z} is an entire function and $\frac{d}{d z} z^{z}=e^{z}$.)
