
Solutions to problems on Assignment 7

9. We will prove the converse of the desired statement. That is, we assume there exists N ∈ Z such that
for every sequence zn in D(P, r)\{P} with lim zn = P , there exists n ∈ N such that |(zn − P )Nf(zn)| ≤ N ;
and we will show that f cannot have an essential singularity at P .

From our assumption it follows that there exists some r0 ∈ (0, r) such that for every z ∈ D(P, r0)\{P},
|(z − P )Nf(z)| ≤ N . For if this were not true, then for every n ∈ N, there would exist z = zn ∈
D(P, 1/n)\{P} such that |(zn − P )Nf(zn)| > N . Then {zn} is a sequence such that lim zn = P and
there is no n ∈ N such that |(zn − P )Nf(zn)| ≤ N , violating our assumption.

Now define g(z) = (z − P )Nf(z). From the preceding paragraph we know that g(z) is bounded on
D(P, r0)\{P}, so g has a removable singularity at P . Therefore g(z) has a power series expansion

g(z) =
∞∑

n=0

ak(z − P )k

on D(P, r0)\{P}. Hence

f(z) = g(z)/(z − P )N =
∞∑

n=0

ak(z − P )k−N

on D(P, r0)\{P}. But this implies that f has a pole of order N at P , not an essential singularity at P .

23. Since f has a pole of order k at P , then f has the Laurent expansion

f(z) =
∞∑

n=−k

an(z − P )n

for all z in some punctured neighborhood D(P, r)\{P}. Then g(z) = (z − P )kf(z) has the expansion

g(z) =
∞∑

n=−k

an(z − P )n+k =
∞∑

n=0

an−k(z − P )n

in D(P, r)\{P}. So the coefficient of (z−P )n in the Taylor series expansion for g is the same as the coefficient
of (z − P )n−k in the Laurent series expansion for f .

34(a). We are integrating f over the circle C = {|z| = 5} with (presumably) the positive orientation.
The poles of f are at z = −1 and z = −2i, both of which are within C. The residue of f at z = −1 is
−1

−1 + 2i
=

1 + 2i

5
, and the residue of f at z = −2i is

−2i

−2i + 1
=

4− 2i

5
. So by the residue theorem,

1
2πi

∫

C

f(z) dz =
1 + 2i

5
+

4− 2i

5
= 1.

34(d). The poles of f are at 0, −1, and −2, all of which are within γ. We have

Resf (0) = e0/((1)(2)) = 1/2
Resf (−1) = e−1/((−1)(1)) = −1/e

Resf (−2) = e−2/((−2)(−1)) = 1/(2e2)

Since γ has the negative orientation, then the desired integral is equal to the negative of the sum of the
residues, and is therefore equal to −(e2 − 2e + 1)/(2e2).
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34(i). We have f(z) =
sin z

cos z
, and sin z and cos z are entire, so the only singularities of f are at the

zeroes of cos z, which as we saw in class are all on the real line and are the same as the zeroes of the real
cosine function, namely {((2k +1)π)/2 : k ∈ Z}. All these poles are simple (because sin z is non-zero at each
pole and the derivative of cos z is non-zero at each pole) and the residues are

Resf

(
(2k + 1)π

2

)
=

sin((2k + 1)π/2)
sin((2k + 1)π/2)

= 1.

From the diagram of γ we see that the only poles of f about which γ has non-zero index are −3π/2 and
3π/2, and Indγ(−3π/2) = −1 and Indγ(3π/2) = 1. Therefore

1
2πi

∫

γ

tan z dz = Resf

(−3π

2

)
Indγ(−3π/2) + Resf

(
3π

2

)
Indγ(3π/2) = −1 + 1 = 0.

2


