Solutions to problems on Assignment 7

9. We will prove the converse of the desired statement. That is, we assume there exists $N \in \mathbf{Z}$ such that for every sequence z_{n} in $D(P, r) \backslash\{P\}$ with $\lim z_{n}=P$, there exists $n \in \mathbf{N}$ such that $\left|\left(z_{n}-P\right)^{N} f\left(z_{n}\right)\right| \leq N$; and we will show that f cannot have an essential singularity at P.

From our assumption it follows that there exists some $r_{0} \in(0, r)$ such that for every $z \in D\left(P, r_{0}\right) \backslash\{P\}$, $\left|(z-P)^{N} f(z)\right| \leq N$. For if this were not true, then for every $n \in \mathbf{N}$, there would exist $z=z_{n} \in$ $D(P, 1 / n) \backslash\{P\}$ such that $\left|\left(z_{n}-P\right)^{N} f\left(z_{n}\right)\right|>N$. Then $\left\{z_{n}\right\}$ is a sequence such that $\lim z_{n}=P$ and there is no $n \in \mathbf{N}$ such that $\left|\left(z_{n}-P\right)^{N} f\left(z_{n}\right)\right| \leq N$, violating our assumption.

Now define $g(z)=(z-P)^{N} f(z)$. From the preceding paragraph we know that $g(z)$ is bounded on $D\left(P, r_{0}\right) \backslash\{P\}$, so g has a removable singularity at P. Therefore $g(z)$ has a power series expansion

$$
g(z)=\sum_{n=0}^{\infty} a_{k}(z-P)^{k}
$$

on $D\left(P, r_{0}\right) \backslash\{P\}$. Hence

$$
f(z)=g(z) /(z-P)^{N}=\sum_{n=0}^{\infty} a_{k}(z-P)^{k-N}
$$

on $D\left(P, r_{0}\right) \backslash\{P\}$. But this implies that f has a pole of order N at P, not an essential singularity at P.
23. Since f has a pole of order k at P, then f has the Laurent expansion

$$
f(z)=\sum_{n=-k}^{\infty} a_{n}(z-P)^{n}
$$

for all z in some punctured neighborhood $D(P, r) \backslash\{P\}$. Then $g(z)=(z-P)^{k} f(z)$ has the expansion

$$
g(z)=\sum_{n=-k}^{\infty} a_{n}(z-P)^{n+k}=\sum_{n=0}^{\infty} a_{n-k}(z-P)^{n}
$$

in $D(P, r) \backslash\{P\}$. So the coefficient of $(z-P)^{n}$ in the Taylor series expansion for g is the same as the coefficient of $(z-P)^{n-k}$ in the Laurent series expansion for f.

34(a). We are integrating f over the circle $C=\{|z|=5\}$ with (presumably) the positive orientation. The poles of f are at $z=-1$ and $z=-2 i$, both of which are within C. The residue of f at $z=-1$ is $\frac{-1}{-1+2 i}=\frac{1+2 i}{5}$, and the residue of f at $z=-2 i$ is $\frac{-2 i}{-2 i+1}=\frac{4-2 i}{5}$. So by the residue theorem,

$$
\frac{1}{2 \pi i} \int_{C} f(z) d z=\frac{1+2 i}{5}+\frac{4-2 i}{5}=1
$$

$\mathbf{3 4}(\mathbf{d})$. The poles of f are at $0,-1$, and -2 , all of which are within γ. We have

$$
\begin{aligned}
\operatorname{Res}_{f}(0) & =e^{0} /((1)(2))=1 / 2 \\
\operatorname{Res}_{f}(-1) & =e^{-1} /((-1)(1))=-1 / e \\
\operatorname{Res}_{f}(-2) & =e^{-2} /((-2)(-1))=1 /\left(2 e^{2}\right)
\end{aligned}
$$

Since γ has the negative orientation, then the desired integral is equal to the negative of the sum of the residues, and is therefore equal to $-\left(e^{2}-2 e+1\right) /\left(2 e^{2}\right)$.

34(i). We have $f(z)=\frac{\sin z}{\cos z}$, and $\sin z$ and $\cos z$ are entire, so the only singularities of f are at the zeroes of $\cos z$, which as we saw in class are all on the real line and are the same as the zeroes of the real cosine function, namely $\{((2 k+1) \pi) / 2: k \in \mathbf{Z}\}$. All these poles are simple (because $\sin z$ is non-zero at each pole and the derivative of $\cos z$ is non-zero at each pole) and the residues are

$$
\operatorname{Res}_{f}\left(\frac{(2 k+1) \pi}{2}\right)=\frac{\sin ((2 k+1) \pi / 2)}{\sin ((2 k+1) \pi / 2)}=1
$$

From the diagram of γ we see that the only poles of f about which γ has non-zero index are $-3 \pi / 2$ and $3 \pi / 2$, and $\operatorname{Ind}_{\gamma}(-3 \pi / 2)=-1$ and $\operatorname{Ind}_{\gamma}(3 \pi / 2)=1$. Therefore

$$
\frac{1}{2 \pi i} \int_{\gamma} \tan z d z=\operatorname{Res}_{f}\left(\frac{-3 \pi}{2}\right) \operatorname{Ind}_{\gamma}(-3 \pi / 2)+\operatorname{Res}_{f}\left(\frac{3 \pi}{2}\right) \operatorname{Ind}_{\gamma}(3 \pi / 2)=-1+1=0
$$

