Solutions to problems on Assignment 16

(Note: you don't necessarily have to include as much detail in your arguments as in the ones given below - some of the details can be safely omitted on the grounds that they're obvious. However, what's obvious to one person is not always obvious to another.)
6.2.6. Define the function f by $f(x):=\sin x$ for all $x \in \mathbf{R}$. Now let x and y be given (fixed but arbitrary) real numbers.

If $x<y$, we can apply the Mean Value Theorem to f on the interval $[x, y]$. This gives the existence of a number $c \in(x, y)$ such that

$$
f^{\prime}(c)=\frac{f(y)-f(x)}{y-x}
$$

Since $f^{\prime}(z)=\cos z$ for all $z \in \mathbf{R}$, and $|\cos z| \leq 1$ for all $z \in \mathbf{R}$, it follows that $\left|f^{\prime}(c)\right| \leq 1$. Therefore, from the above equation we obtain that

$$
\left|\frac{f(y)-f(x)}{y-x}\right| \leq 1
$$

Hence

$$
\begin{aligned}
& \left|\frac{\sin (y)-\sin (x)}{y-x}\right| \leq 1, \\
& \frac{|\sin (y)-\sin (x)|}{|y-x|} \leq 1
\end{aligned}
$$

or

After multiplying by $|y-x|$, this gives

$$
|\sin (y)-\sin (x)| \leq|y-x| .
$$

Since, for all real numbers a and b, we have $|a-b|=|b-a|$, this is the same as the desired inequality

$$
|\sin (x)-\sin (y)| \leq|x-y|
$$

If $y<x$, we apply the same argument on the interval $[y, x]$, and obtain the same result.
If $y=x$, the desired inequality is obvious, because it just says that $0 \leq 0$.
So the inequality is proved in all cases.
6.2.7. Define the function f by $f(x):=\ln x$ for all $x>0$. Now let x be a given (fixed but arbitrary) real number such that $x>1$.

Apply the Mean Value Theorem to f on the interval $[1, x]$. This gives the existence of a number $c \in(1, x)$ such that

$$
f^{\prime}(c)=\frac{f(x)-f(1)}{x-1} .
$$

Now $f^{\prime}(z)=1 / z$ for all $z>0$, so $f^{\prime}(c)=1 / c$. Also $f(1)=\ln 1=0$. So the above equation becomes

$$
\frac{1}{c}=\frac{\ln x-0}{x-1}=\frac{\ln x}{x-1} .
$$

Since $c \in(1, x)$, then $1<c<x$, so

$$
\frac{1}{x}<\frac{1}{c}<1
$$

and, combined with the equation in the preceding paragraph, this gives

$$
\frac{1}{x}<\frac{\ln x}{x-1}<1
$$

Since $x>1$, then $x-1>0$, and we can multiply these inequalities by $x-1$ without changing their direction. Hence we get

$$
\frac{x-1}{x}<\ln x<x-1,
$$

as desired.

