SUPPLEMENTARY PROBLEMS

MATH 4163, INTRODUCTION TO PDE

1. Fourier series

- 1.1. Are the following pairs of functions orthogonal over the interval indicated?
- a. 1 and x, [-2, 2]
- b. 1 and x, [0, 2]
- c. $\sin x$ and $\sin 2x$, $[0, \pi]$
- d. $\sin x$ and $\cos x$, $[0, \pi]$
- e. $\sinh x$ and $\cosh x$, [-1,1] f. $P_2(x)=(1/2)(3x^2-1)$ and $P_3(x)=(1/2)(5x^3-3x)$, [-1,1]
- a. Prove: The system of functions $\left\{\sin\frac{\pi nx}{L}\right\}_{n=1}^{\infty}$ is orthogonal on interval [0, L].
- b. Normalize this system.
- 1.3.
- a. Prove: The system of functions $\left\{\cos\frac{\pi nx}{L}\right\}_{n=0}^{\infty}$ is orthogonal on interval [0,L].
- b. Normalize this system.
- 1.4. Show that the functions $\psi_1(x) = 1$ and $\psi_2(x) = x$ are orthogonal on the interval -1 < x < 1, and determine constants A and B such that the function $\psi_3(x) = 1 + Ax + Bx^2$ is orthogonal to both ψ_1 and ψ_2 on that interval.
- 1.5. Find the Fourier cosine series of the following functions over the interval indicated. Sketch the graph of the series for at least 3 periods. Find the Fourier sine series of the following functions over the interval indicated. Sketch the graph of the series for at least 3 periods.
- a. $x, [0, \pi]$
- b. 1, [0, 2]
- c. x^2 , [0,1]
- d. e^{-x} , [0,2]

2. Superposition Principle

2.1. Suppose that the functions $u_n = u_n(x,y), n = 1,2,\ldots$, are all solutions of Laplace's equation

$$u_{xx}+u_{yy}=0.$$

Show that for any constants c_n , n = 1, 2, ..., the linear combination

$$u = \sum_{n=1}^{N} c_n u_n$$

is also a solution.

2.2. Verify that each of the functions

$$u_0(x,y) = y$$
, $u_n(x,y) = \sinh ny \cos nx$ $n = 1, 2, ...$

satisfies Laplace's equation

$$u_{xx} + u_{yy} = 0$$
, $0 < x < \pi$, $0 < y < 2$

and the three boundary conditions

$$u_x(0,y) = u_x(\pi,y) = 0, \quad u(x,0) = 0.$$

Show that any linear combination

$$u(x,y) = A_0 y + \sum_{n=1}^{N} A_n \sinh ny \cos nx$$

satisfies the same differential equation and boundary conditions.

2.3. Verify that each of the functions

$$u_n(x,t) = e^{-\frac{(2n-1)^2\pi^2}{4}t} \sin\frac{(2n-1)\pi x}{2}, \quad n = 1, 2, \dots$$

satisfies the heat equation

$$u_t = u_{xx}, \quad 0 < x < 1, \ t > 0$$

and the boundary conditions

$$u(0,t) = u_x(1,t) = 0.$$

Show that any linear combination

$$u(x,t) = \sum_{n=1}^{N} u_n(x,t)$$

satisfies the same differential equation and boundary conditions.

2.4. Verify that each of the functions

$$u_{mn}(x,y,z)=e^{-z\sqrt{m^2+n^2}}\cos my\sin nx,\quad m=0,1,2,\ldots\quad n=1,2,\ldots$$
 satisfies Laplace's equation

$$u_{xx} + u_{yy} + u_{zz} = 0$$

and the boundary conditions

$$u(0,y,z) = u(\pi,y,z) = 0, \quad u_y(x,0,z) = u_y(x,\pi,z) = 0.$$

Show that any linear combination

$$u(x,y,z) = \sum_{n=1}^{N} u_n(x,y,z)$$

satisfies the same differential equation and boundary conditions.

TABLE 1. Thermal diffusivity constants k

Material	$k (cm^2/s)$
Silver	1.70
Copper	1.15
Aluminum	0.85
Iron	0.15
Concrete	0.005

3. HEAT EQUATION

- 3.1. Suppose that a rod 40cm long with insulated lateral surface is heated to a uniform temperature of $100^{\circ}C$, and that at time t=0 its two ends are embedded in ice at $0^{\circ}C$.
- a. Find the temperature u(x,t) of the rod.
- b. In the case the rod is made of copper, show that after 5 min the temperature at the midpoint is about $15^{\circ}C$.
- c. In the case the rod is made of concrete, use the first term of the series to find the time required for its midpoint to cool to $15^{\circ}C$.
- 3.2. A copper rod 50cm long with insulated lateral surface has initial temperature of u(x,0) = 2x, and at time t = 0 its two ends are insulated.
- a. Find the temperature u(x,t) of the rod.
- b. What will its temperature be at x = 20 after 1 min?
- c. How long will it take for the temperature at x = 20 to reach $45^{\circ}C$?
- 3.3. Two slabs of iron, each 10cm thick, are such that one is at $100^{\circ}C$ and the other at $0^{\circ}C$. They are placed face to face in perfect contact, and their outer faces are kept at $0^{\circ}C$.
- a. Find the temperature u(x,t) in the slabs.
- b. What will the temperature at the common face be at after 15 min?
- c. If the slabs are made of concrete, what will the temperature at the common face be at after 1 h?
- 3.4. The temperature u(x,t) in a bare slender wire the rate of heat loss through the lateral surface proportional to its temperature u satisfies

$$u_t = ku_{xx} - hu, \quad 0 < x < L, \ t > 0$$

 $u(0,t) = u(L,t) = 0$
 $u(x,0) = f(x).$

Find the temperature u(x,t) inside the wire. Here h > 0.

3.5. The voltage e(x,t) along a submarine cable 2000 kilometers long satisfies

$$e_{xx} = RCe_t, \quad 0 < x < 2000, \ t > 0$$

 $e(0,t) = e(2000,t) = 0$
 $e(x,0) = \sin\frac{x}{100}.$

Find the voltage e(x,t).

3.6. The current i(x,t) along a submarine cable 1000 kilometers long satisfies

$$i_{xx} = RCi_t, \quad 0 < x < 1000, \ t > 0$$

$$i_x(0,t) = i_x(1000,t) = 0$$

$$i(x,0) = \sin\frac{x}{100}.$$

Find the current i(x,t).

4. WAVE EQUATION

4.1. A vibrating string is fastened to air bearings situated on vertical rods at x = 0 and x = 2. Find the displacement u(x, t) if the conditions are

$$u_{tt} = u_{xx}, \quad 0 < x < 2, \ t > 0$$

$$u_x(0,t) = u_x(2,t) = 0$$

$$u(x,0) = x, \ u_t(x,0) = 0$$

4.2. The pressure p(x,t) in an organ pipe satisfies

$$p_{xx} = \frac{1}{c^2} p_{tt}$$

If the pipe is L meters long and open at both ends, find the pressure p(x,t) if p(x,0) = 0 and $p_t(x,0) = 40$.

- **4.3.** The length of a guitar string is 65cm. If the string is plucked 15cm from the bridge (i.e. the end of the wire) by raising it 3mm, find the displacement u(x,t).
- 4.4. A string vibrating in air with resistance proportional to velocity satisfies

$$u_{tt} = a^{2}u_{xx} - 2hu_{t}, \quad 0 < x < L, \ t > 0$$

$$u(0,t) = u(L,t) = 0$$

$$u(x,0) = f(x), \ u_{t}(x,0) = 0$$

$$0 < h < \frac{\pi a}{L}$$

Assume

Find the displacement u(x, t).

- 5. LAPLACE'S EQUATION
- 6. STURM-LIOUVILLE PROBLEMS
- **6.1.** Solve the following problem (b > 1)

$$r^{2}u_{rr}(r,\theta) + ru_{r}(r,\theta) + u_{\theta\theta}(r,\theta) = 0, \quad 1 < r < b, \ 0 < \theta < \pi$$
$$u(r,0) = 0, \ u(r,\pi) = r$$
$$u(1,\theta) = 0, \ u(b,\theta) = 0$$

6.2. Solve the following problem

$$u_t(x,t) = ku_{xx}(x,t), \quad 0 < x < \pi, \ t > 0$$

 $u(0,t) = 0, \ u_x(\pi,t) = -hu(\pi,t), \ u(x,0) = f(x)$

6.3. Solve the following problem (h > 0)

$$u_t(x,t) = ku_{xx}(x,t), \quad 0 < x < 1, \ t > 0$$

 $u_x(0,t) = 0, \ u_x(1,t) = -hu(1,t), \ u(x,0) = f(x)$

6.4. Solve the following problem (h > 0)

$$u_{xx} + u_{yy} = 0$$
, $0 < x < a$, $0 < y < b$
 $u_x(0, y) = 0$, $u_x(a, y) = -hu(a, y)$
 $u(x, 0) = 0$, $u(x, b) = f(x)$

6.5. Find a bounded harmonic function in the semi-infinite strip x > 0, 0 < y < 1, satisfying

$$u(x,0) = 0$$
, $u_y(x,1) = -hu(x,1)$, $u(0,y) = u_0$

where h > 0.

6.6. Find a bounded harmonic function in the semi-infinite strip 0 < x < 1, y > 0, satisfying

$$u_x(0,y) = 0, \ u_x(1,y) = -hu(1,y), \ u(x,0) = f(x)$$

where h > 0.

6.7. Solve the following problem

$$(t+1)u_t(x,t) = u_{xx}(x,t), \quad 0 < x < \pi, \ t > 0$$

$$u(0,t) = 0, \ u_x(\pi,t) = 0, \ u(x,0) = 1$$

6.8. Write the following differential equations in self-adjoint form

a.
$$y'' + 2y' + 3y = 0$$

b.
$$xy'' + y' + (x - \lambda)y = 0$$

c.
$$x^2y'' + xy' + 10y = 0$$

d.
$$x^2y'' + xy' + (x^2 - \lambda^2)y = 0$$
 Bessel's equation

e.
$$(1-x^2)y'' - 2xy' + n(n+1)y = 0$$
 Legendre's equation

$$f. \ y'' + \lambda y = 0$$

g.
$$y'' - xy = 0$$
 Airy's equation

h.
$$(1-x^2)y'' - xy' + n^2y = 0$$
 Chebyshev's equation

i.
$$(1-x^2)y'' - 3xy' + n(n+2)y = 0$$
 Chebyshev's equation

j.
$$xy'' + (1-x)y' + ny = 0$$
 Laguerre's equation

k.
$$y'' - 2xy' + 2ny = 0$$
 Hermite's equation

7. Bessel Functions

7.1. Establish the differentiation formula

$$\int_0^x s^n J_0(s) \ ds = x^n J_1(x) + (n-1)x^{n-1} J_0(x) - (n-1)^2 \int_0^x s^{n-2} J_0(s) \ ds$$

$$n = 2, 3, \dots$$

7.2. Find

$$\int_{0}^{x} s^3 J_0(s) \ ds$$

7.3. Prove

$$\int_0^x s^5 J_0(s) \ ds = x(x^2 - 8)[4xJ_0(x) + (x^2 - 8)J_1(x)]$$

7.4. Find the Fourier-Bessel series on interval (0,c)

$$100 = \sum_{j=1}^{\infty} A_j J_0(\alpha_j x), \quad J_0(\alpha_j c) = 0$$

7.5. Find the Fourier-Bessel series on interval (0,5)

$$x = \sum_{i=1}^{\infty} A_j J_1(\alpha_j x), \quad J_1(5\alpha_j) = 0$$

7.6. Find the Fourier-Bessel series on interval (0, c)

$$10 = \sum_{j=1}^{\infty} A_j J_2(\alpha_j x), \quad J_2(\alpha_j c) = 0$$

7.7. Find the Fourier-Bessel series on interval (0, c).

$$x^2 = \sum_{j=1}^{\infty} A_j J_0(\alpha_j x), \quad J_0(\alpha_j c) = 0$$

- 7.8. Suppose that a circular membrane u(r,t), 0 < r < c has initial position u(r,0) = f(r) and the initial velocity $u_t(r,0) = 0$. Find the deflection u(r,t), assuming u(c,t) = 0, t > 0.
- **7.9.** Suppose that a circular membrane u(r,t), 0 < r < c has initial position u(r,0) = 0 and the initial velocity $u_t(r,0) = v_0$. Find the deflection u(r,t), assuming u(c,t) = 0, t > 0.

7.10.

a. Suppose that a circular membrane u(r,t), 0 < r < c has initial position u(r,0) = 0 and the initial velocity

$$u_t(r,0) = egin{cases} rac{P_0}{\pi\epsilon^2} & ext{if } 0 \leq r < \epsilon, \\ 0 & ext{if } \epsilon < r \leq c. \end{cases}$$

Find the deflection u(r,t), assuming u(c,t) = 0, t > 0.

- b. Use the fact that $[J_1(x)]/x \to 1/2$ as $x \to 0$ to find the limiting value of the result in part (a) as $\epsilon \to 0$. This describes the motion of a drumhead resulting from an initial momentum impulse P_0 at its center.
- 7.11. A round hamburger 12 cm in diameter is inserted in a roll (a perfect insulator). Initially the hamburger is at $180^{\circ}C$. Since it is too hot to eat, the hamburger is taken outside, where the temperature is $0^{\circ}C$. Find the temperature of the hamburger u(r,t). How long will it take for the hamburger to cool down to below $50^{\circ}C$? Use only the first term in the series and $k = 0.02cm^2/s$.
- 7.12. Find the steady state temperature u(r, z) in the solid cylinder formed by the three surfaces r = 1, z = 0, z = 1, if u = 0 on the side, the bottom is insulated, and $u = u_0$ at the top.
- **7.13.** Find the steady state temperature u(r,z) in the semi-infinite cylinder $r \le 1$, $z \ge 0$, if u = 1 on the base, and the heat transfer on the surface r = 1 satisfies $u_r(1,z) = -hu(1,z)$.

7.14. Find a harmonic function u(r,z) in the interior of the cylinder formed by the three surfaces r=c, z=0, z=b, if u=0 on the side, u=0 on the bottom, and u=f(r) at the top.

8. Nonhomogeneous Problems

- 8.1. The initial temperature of a slab $0 \le x \le \pi$ is zero. The face x = 0 is kept at temperature 0, and heat is supplied through the face $x = \pi$ at a constant rate A > 0 per unit area, so that $Ku_x(\pi, t) = A$. Find the temperature u(x, t) in the slab.
- **8.2.** Solve the following problem (b > 0)

$$u_t = u_{xx} - bu$$
, $0 < x < \pi$, $t > 0$
 $u(0, t) = 0$, $u(\pi, t) = 1$, $u(x, 0) = 0$

8.3. Solve the following problem

$$u_t = u_{xx} + xp(t), \quad 0 < x < 1, \ t > 0$$

 $u(0,t) = 0, \ u(1,t) = 1, \ u(x,0) = 0$

8.4. Let u(x,t) denote temperature in a slab $0 \le x \le 1$ that is initially at temperature zero, and whose faces are at temperatures

$$u(0,t) = 0, \ u(1,t) = F(t)$$

Find u(x,t), if F(t) and F'(t) are continuous with F(0) = 0.

8.5. Heat is generated in a cylinder at a constant rate $q_0 > 0$ per unit of volume. Find the temperature u(r,t) in the cylinder:

$$u_t = k(u_{rr} + \frac{1}{r}u_r) + q_0, \quad 0 < r < c, \ t > 0$$

$$u(c, t) = 0, \ u(r, 0) = 0$$

8.6. Solve the previous problem if the heat generation rate is time dependent (replace q_0 by q(t)).

9. D'ALEMBERT SOLUTION

9.1. Show that

$$u(x,t) = \frac{f(x+at) + f(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} g(s) \ ds$$

satisfies the wave equation

$$u_{tt} = a^2 u_{xx}, \quad -\infty < x < \infty, \quad t > 0,$$

 $u(x,0) = f(x), \quad u_t(x,0) = g(x).$

- **9.2.** Let g(x) = 0 in Problem (9.1). Derive the solution u(x,t) for (9.1) using the Fourier Transform.
- 9.3. An infinite string is initially at rest along the x axis. The string is lifted over the interval (0,2) to form an equilateral triangle, and then released. Sketch the string position for various times. Use a=1.