Math 4163

Assignment 9

1. Consider the heat kernel $K(x, y, t)$, defined for $t>0$ and $x \in \mathbf{R}, y \in \mathbf{R}$ by

$$
K(x, y, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-(x-y)^{2} /(4 k t)}
$$

(a) Show that K satisfies the heat equation,

$$
K_{t}=k K_{x x}
$$

(b) Use L'hopital's rule to show that if $x \neq y$, then $\lim _{t \rightarrow 0^{+}} K(x, y, t)=0$.
(c) Show that for all $t>0$,

$$
\int_{-\infty}^{\infty} K(x, y, t) d y=1
$$

(You can use the fact that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.)
2. Show that if $F(\omega)$ is the Fourier transform of $f(x)$, and β is any real number, then the inverse Fourier transform of $e^{i \omega \beta} F(\omega)$ is $f(x-\beta)$.
3. Consider the initial-value problem for the heat equation with convection,

$$
\begin{aligned}
u_{t} & =k u_{x x}+c u_{x} & & \text { for }-\infty<x<\infty \text { and } t>0 \\
u(x, 0) & =f(x) & & \text { for }-\infty<x<\infty
\end{aligned}
$$

where k and c are constants, and $f(x)$ is a given function.
(a) Apply the Fourier transform in x to both sides of the equation, and use the properties of Fourier transforms of derivatives (see the inside back cover of the text) to obtain an ordinary differential equation in t for $U(\omega, t)$, the Fourier transform of $u(x, t)$.
(b) Solve the ordinary differential equation for $U(\omega, t)$. The general solution will contain a function of ω, which can be determined using the initial condition $u(x, 0)=f(x)$.
(c) Take the inverse Fourier transform of $U(\omega, t)$ to obtain an expression for $u(x, t)$. Use the result of problem 2 above. Your answer should give $u(x, t)$ as an integral involving f.
4. Consider the initial-value problem for Laplace's equation on an infinite strip:

$$
\begin{aligned}
u_{x x}+u_{y y} & =0 & & \text { for }-\infty<x<\infty \text { and } 0<y<L, \\
u(x, 0) & =0 & & \text { for }-\infty<x<\infty \\
u(x, L) & =f(x) & & \text { for }-\infty<x<\infty,
\end{aligned}
$$

where $f(x)$ is a given function.
(a) Apply the Fourier transform in x to both sides of the equation, and use the properties of Fourier transforms of derivatives (see the inside back cover of the text) to obtain an ordinary differential equation in y for $U(\omega, y)$, the Fourier transform of $u(x, y)$.
(b) Solve the ordinary differential equation for $U(\omega, y)$. The general solution will contain two functions of ω, which can be determined using the boundary conditions $u(x, 0)=0$ and $u(x, L)=f(x)$.
(c) Take the inverse Fourier transform of $U(\omega, y)$ to obtain an expression for $u(x, y)$. Use the fact that if $G(\omega)=\frac{\sinh (\omega a)}{\sinh (\omega b)}$, where a and b are real numbers with $0<a<b$, then the inverse Fourier transform of $G(\omega)$ is

$$
g(x)=\frac{\pi}{b}\left(\frac{\sin \left(\frac{\pi a}{b}\right)}{\cosh \left(\frac{\pi x}{b}\right)+\cos \left(\frac{\pi a}{b}\right)}\right) .
$$

Your answer should give $u(x, y)$ as an integral involving f.

