Math 4163
Solutions to problems on Assignment 6

1. As we saw when we solved Laplace’s equation on the entire circle, separated solutions v(r,0) =
d(0)G(r) of vy + v, + Jrvgy satisfy the two ODE’s ¢”(6) + A¢(0) = 0 and r*G”(r) +rG'(r) — AG(r) =0,
where A is a constant. If the separated solution is to satisfy the the boundary conditions v(r,0) = v(r,0/2) =0
for 0 < r <1, we see that for the solution to be nontrivial, we must have ¢(0) = ¢(6/2) = 0.

We already know from previous work that the eigenvalue problem ¢” + A¢p = 0, ¢(0) = ¢(L) = 0,
has eigenvalues A = (n7/L)?, n € {1,2,3,...}, with corresponding eigenfunctions ¢(¢) = sin(n76/L). In
this case we have L = 7/2, so the eigenvalues are A\ = (2n)%, n € {1,2,3,...}, and the corresponding
eigenfunctions are ¢(6) = sin(2nf).

We also know from previous work that for A > 0, the solution of the ODE for G(r) can be found by
putting G(r) = r? and finding two independent solutions by solving a quadratic equation for p. This gives
us the general solution of the ODE for GG as

G(r) = ArvA 4 Br*ﬁ,
and in this case, since A = (2n)?,
G(r) = Ar®" + Br—2".

If the separated solution v(r,0) = ¢(6)G(r) is to satisfy the boundary condition that 111% v(r,0) exists, we

see that we must have B = 0, so G(r) = Ar?", and
v(r,0) = r?" sin(2n6).

Now we look for a linear combination

v(r,0) = Z B, r*" sin(2n0)

n=1

which satisfies v,-(1,60) =1 for 0 < § < /2. We have
o0
vr(r,0) = Z B, 2nr*" ! sin(2n6),
n=1

so we want -
v(1,0) =Y 2nB, sin(2nf) = 1.
n=1
In other words, the numbers 2nB,, should be the coefficients in the Fourier sine series for the function

f(0) =1 on [0,7/2]. From the formula for the coefficients in a Fourier sine series on [0, L], we have, with
L=mn/2,

B 2L9' 9Ld947r/2' 0) db 1
B, =7 [ F0)sin(uno/1) o = 2 [ sin(and) a0 = S (—cos(mn) +1).

S0 )
By=——(1—
— (1 = cos(mn))

and
1 = 1—cos(mn) o, .
0)=— E ——————= r*"sin(2n0).
v(r,0) - r°" sin(2nf)



2. As in the solution of Laplace’s equation on the circle, we have that separated solutions v(r,0) =
$(0)G(r) of vy + Lv, + Huvgy satisfy the two ODE’s ¢”(6) + A¢(0) = 0 and G (r) + rG'(r) — AG(r) = 0;
and ¢(0) satisfies periodic boundary conditions ¢(—m) = ¢(w) and ¢'(—7) = ¢'(7). We already know that
the eigenvalues of the problem for ¢(#) are A = 0, with corresponding eigenfunction ¢(f) = 1, and A = (nm)?,
n € {1,2,3,...}, with corresponding eigenfunctions ¢(6) = cos(n) and ¢(0) = sin(nd). We also know that

independent solutions of the equation for G(r) are
G(r)=1 and G(r)=logr,

when A = 0, and
G(r)=r" and G(r)=r"",

when \ = (nm)2.
So we take

v(r,0) = Ay + Cologr + Z (A, 1" cos(nb) + By,r™ sin(nf) + C,r~" cos(nb) + Dy,,r~ " sin(nd)).
n=1

To satisfy v(3,0) = 0, we need

0=Ap+ Colog3+ Y (3"A, +37"Cy) cos(nf) + (3" By, + 37" Dy,) sin(no).

n=1

The coefficients of the Fourier series for the constant function 0 are all zero, so we must have Ag+Cplog3 =0
and 3"A, +37"C, = 0 and 3"B,, + 3 "D, = 0 for all n € {1,2,3,...}. Hence Ag = —Cplog3 and
A, =-C,/9", and B, = —D,,/9" for all n € {1,2,3,...}. This then gives

v(r,0) = Colog(r/3) + Z Cn(r=™ = (r/9)") cos(n@) + D, (r=" — (r/9)™) sin(nb).

n=1
To satisfy v(4,6) = f(0), we need
f(0) = Colog(4/3) + Z Cp(47" = (4/9)") cos(nb) + Dy, (47" — (4/9)™) sin(nb),

so the coefficients on the right of the equation must be the coefficients in the Fourier series for f(#) on
[-7,7]. Thus

Colog(4/3) = — [ f(0) do i/ 1 do = %
—T 0

2T - 21
(4= — (4/9)") = % " (60) cos(nf) db — % / " cos(n) df =0,
Do = @/0) = 1 [ £)sin(us) d = ["sin(us) dp = 1=,

1 — cos(nm)

nw(4=" — (4/9)")

v(r,0) = m + i <1 - (:;(M)) (Z_: - gg;:) sin(n).

n=1

which gives us that Cy = 1/(2log(4/3)), and C,, =0 and D,, = for n > 1. Therefore




3.

(a) For A = 0, the general solution of the ODE ¢"(x) = 0 is ¢(x) = A + Bz, with derivative ¢'(z) = B.
The condition ¢(0) = ¢’(0) then gives A = B, so ¢(z) = A+ Az and ¢'(x) = A. But then the condition
o(1) = —¢'(1) gives A+ A = — A, which implies A = 0 and hence ¢(x) = 0. So, for A = 0, the only function
¢ which solves the problem is the trivial solution ¢(x) = 0. Hence A = 0 is not an eigenvalue.

(b) The Rayleigh quotient is the following relation between an eigenvalue A and its corresponding
eigenfunction ¢(x):

_ Jy ¢/ @)? dz — 9(1)¢/ (1) + 6(0)¢(0)
Jo 6(@)? do

For this problem, using the conditions ¢(0) = ¢'(0) and ¢(1) = —¢'(1), we can rewrite the Rayleigh quotient
as

A

1
N Jo ¢'(2)? dz + ¢'(1)* + ¢/(0)?
= : .
fO o(x)? dx
Since the square of a real number is always non-negative, then the numerator of this expression is the sum
of non-negative terms, so is non-negative; and the denominator is also non-negative. So their quotient A is

also non-negative.
(¢) For A > 0, the general solution of the ODE for ¢ is

¢(x) = Acos Vx4 Bsin VA,

and its derivative is

¢’ (z) = —AVAsin vV Az + BV A cos Vz.
The condition ¢(0) = ¢'(0) gives A = BV, so

¢(x) = B(VAcos VAz + sin VAz)

and

¢'(z) = B(=Asin VAz + VAcos VAz).
Then the condition ¢(1) = —¢'(1) gives

VAcos VA + sin VA = Asin VA — \f/\cos\[\,

or

2V Acos VA = (A — 1) sin VA,

Dividing by cos v/A and A — 1 gives the desired equation.
(The graphs of tan VA and %, with a few points of intersection marked, should be included here.)

4. For A = —k?, the general solution of the ODE for ¢ is ¢(x) = A cosh kx+ B sinh sz, and the condition
»(0) = 0 gives A = 0, so ¢(z) = Bsinhkz and ¢'(z) = Brcoshkz. Then the condition ¢’'(1) = 10¢4(1)
becomes

Bk coshk = 10B sinh &.

This yields the equation

tanh x = T
which can be seen to have a positive solution by graphing tanh x and /10 as functions of k. A corresponding
eigenfunction is ¢(z) = sinh kz.

(The graphs of tanh x and /10 should be included here as part of your answer.) The reason that the
graphs intersect at some point where x > 0 is that the graph of /10 starts out below the graph of tanh s
for Kk near zero, because the derivative of tanh s is 1 at kK = 0, so the slope of tanh x is greater than that of
k/10 at k = 0. But for, say, x = 100, tanh x is near 1 and /10 = 10, so there the graph of /10 is above
that of tanh k. So somewhere in between £ = 0 and x = 10, the graphs must cross.
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5. Putting u(z,t) = ¢(x)G(t) into the PDE and separating variables, we get

(1) + A1) _ ¢"(x) _
2G(0) o)

which gives us the ODEs ¢”(z) + A¢(x) = 0 and

7)\7

G"(t) + BG(t) + ANG(t) = 0.

The boundary conditions on w at © = 0 and = 1 give us that, for nontrivial solutions, ¢(0) = ¢(1) =0
As we already know, the eigenvalues for this eigenvalue problem for ¢ are A = (n7)?, with n € {1,2,3,...}
and the corresponding eigenfunctions are ¢(x) = sin(nnz).

Putting A = (n7)? into the ODE for G gives

)

G"(t) + BG'(t) + (enm)?G(t) = 0.

This is a linear ODE with constant coefficients, so solutions can be found by putting G(t) = €™ into the
equation and solving for r. We get
72 4 Br + (enm)? = 0,

whose solutions are

—B+ /32 — 4c2n272 —B— /B2 — 4c2n2n?
r= 5 and r = .

2

We were given that § < 4n?m2c?, but as you might have guessed, this was a typo: the condition should
have been 32 < 4n?m%¢c2. Under this condition, the quantity under the radical in the formula will be negative,
so there will be two different solutions to the ODE, given by

G(t) = o—Bt/2 Eit\/An2n2c2— >

)

or more conveniently,
G(t) = e P2 cos(yut) and e P2 sin(y,t),

where 7, = %\/471271'202 — 2. So we can take

(1) u(z,t) = Z sin(nmz)e P2 [A,, cos(yat) + By sin(ynt)]
n=1

and hence

ug(w,t) = Z sin(nmz) (feﬁtﬂ [Ay cos(Ynt) + By sin(y,t)] + eiﬁt/Q'Yn [— Ay sin(ynt) + By, COS(’YTJ)]) :

n=1

Substituting ¢ = 0 into these equations and using the given initial conditions, we get, for all z € [0, 1],

flz) = Z A, sin(nmz)

and

g(z) = i <_fAn + %Bn) sin(nmz).

n=1

From the first of these equations, we get

(2) A, = 2/0 f(x)sin(nrx) dz,
4



and from the second we get

_ 1
TﬁAn + Y Bn = 2/ g(x)sin(nmz) dx.
0
Therefore L
A, 2
B, = ﬁ?’y b g(x) sin(nmz) dx.
n n Jo

Using the formulas for A,, and -, from above, this gives

3) B, (g f@) + g(m)) sin(nmz) dz.

4 1
L An2n2c2 _52/0

The solution to the problem is the series given in (1) for u(z,t), with coefficients A, and B, given in (2)

and (3).



