
Math 4163
Solutions to problems on Assignment 6

1. As we saw when we solved Laplace’s equation on the entire circle, separated solutions v(r, θ) =
φ(θ)G(r) of vrr + 1

r vr + 1
r2 vθθ satisfy the two ODE’s φ′′(θ) + λφ(θ) = 0 and r2G′′(r) + rG′(r)− λG(r) = 0,

where λ is a constant. If the separated solution is to satisfy the the boundary conditions v(r, 0) = v(r, θ/2) = 0
for 0 ≤ r ≤ 1, we see that for the solution to be nontrivial, we must have φ(0) = φ(θ/2) = 0.

We already know from previous work that the eigenvalue problem φ′′ + λφ = 0, φ(0) = φ(L) = 0,
has eigenvalues λ = (nπ/L)2, n ∈ {1, 2, 3, . . . }, with corresponding eigenfunctions φ(θ) = sin(nπθ/L). In
this case we have L = π/2, so the eigenvalues are λ = (2n)2, n ∈ {1, 2, 3, . . . }, and the corresponding
eigenfunctions are φ(θ) = sin(2nθ).

We also know from previous work that for λ > 0, the solution of the ODE for G(r) can be found by
putting G(r) = rp and finding two independent solutions by solving a quadratic equation for p. This gives
us the general solution of the ODE for G as

G(r) = Ar
√

λ + Br−
√

λ,

and in this case, since λ = (2n)2,
G(r) = Ar2n + Br−2n.

If the separated solution v(r, θ) = φ(θ)G(r) is to satisfy the boundary condition that lim
r→0

v(r, θ) exists, we

see that we must have B = 0, so G(r) = Ar2n, and

v(r, θ) = r2n sin(2nθ).

Now we look for a linear combination

v(r, θ) =
∞∑

n=1

Bnr2n sin(2nθ)

which satisfies vr(1, θ) = 1 for 0 ≤ θ ≤ π/2. We have

vr(r, θ) =
∞∑

n=1

Bn2nr2n−1 sin(2nθ),

so we want

vr(1, θ) =
∞∑

n=1

2nBn sin(2nθ) = 1.

In other words, the numbers 2nBn should be the coefficients in the Fourier sine series for the function
f(θ) = 1 on [0, π/2]. From the formula for the coefficients in a Fourier sine series on [0, L], we have, with
L = π/2,

2nBn =
2
L

∫ L

0

f(θ) sin(nπθ/L) dθ =
4
π

∫ π/2

0

sin(2nθ) dθ =
4

2nπ
(− cos(πn) + 1) ,

so
Bn =

1
πn2

(1− cos(πn))

and

v(r, θ) =
1
π

∞∑
n=1

1− cos(πn)
n2

r2n sin(2nθ).
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2. As in the solution of Laplace’s equation on the circle, we have that separated solutions v(r, θ) =
φ(θ)G(r) of vrr + 1

r vr + 1
r2 vθθ satisfy the two ODE’s φ′′(θ) + λφ(θ) = 0 and r2G′′(r) + rG′(r)− λG(r) = 0;

and φ(θ) satisfies periodic boundary conditions φ(−π) = φ(π) and φ′(−π) = φ′(π). We already know that
the eigenvalues of the problem for φ(θ) are λ = 0, with corresponding eigenfunction φ(θ) = 1, and λ = (nπ)2,
n ∈ {1, 2, 3, . . . }, with corresponding eigenfunctions φ(θ) = cos(nθ) and φ(θ) = sin(nθ). We also know that
independent solutions of the equation for G(r) are

G(r) = 1 and G(r) = log r,

when λ = 0, and
G(r) = rn and G(r) = r−n,

when λ = (nπ)2.
So we take

v(r, θ) = A0 + C0 log r +
∞∑

n=1

(
Anrn cos(nθ) + Bnrn sin(nθ) + Cnr−n cos(nθ) + Dnr−n sin(nθ)

)
.

To satisfy v(3, θ) = 0, we need

0 = A0 + C0 log 3 +
∞∑

n=1

(3nAn + 3−nCn) cos(nθ) + (3nBn + 3−nDn) sin(nθ).

The coefficients of the Fourier series for the constant function 0 are all zero, so we must have A0+C0 log 3 = 0
and 3nAn + 3−nCn = 0 and 3nBn + 3−nDn = 0 for all n ∈ {1, 2, 3, . . . }. Hence A0 = −C0 log 3 and
An = −Cn/9n, and Bn = −Dn/9n for all n ∈ {1, 2, 3, . . . }. This then gives

v(r, θ) = C0 log(r/3) +
∞∑

n=1

Cn(r−n − (r/9)n) cos(nθ) + Dn(r−n − (r/9)n) sin(nθ).

To satisfy v(4, θ) = f(θ), we need

f(θ) = C0 log(4/3) +
∞∑

n=1

Cn(4−n − (4/9)n) cos(nθ) + Dn(4−n − (4/9)n) sin(nθ),

so the coefficients on the right of the equation must be the coefficients in the Fourier series for f(θ) on
[−π, π]. Thus

C0 log(4/3) =
1
2π

∫ π

−π

f(θ) dθ =
1
2π

∫ π

0

1 dθ =
1
2
,

Cn(4−n − (4/9)n) =
1
π

∫ π

−π

f(θ) cos(nθ) dθ =
1
π

∫ π

0

cos(nθ) dθ = 0,

Dn(4−n − (4/9)n) =
1
π

∫ π

−π

f(θ) sin(nθ) dθ =
1
π

∫ π

0

sin(nθ) dθ =
1− cos(nπ)

nπ
,

which gives us that C0 = 1/(2 log(4/3)), and Cn = 0 and Dn =
1− cos(nπ)

nπ(4−n − (4/9)n)
for n ≥ 1. Therefore

v(r, θ) =
log(r/3)

2 log(4/3)
+

∞∑
n=1

(
1− cos(nπ)

nπ

)(
r−n − (r/9)n

4−n − (4/9)n

)
sin(nθ).
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3.
(a) For λ = 0, the general solution of the ODE φ′′(x) = 0 is φ(x) = A + Bx, with derivative φ′(x) = B.

The condition φ(0) = φ′(0) then gives A = B, so φ(x) = A + Ax and φ′(x) = A. But then the condition
φ(1) = −φ′(1) gives A + A = −A, which implies A = 0 and hence φ(x) ≡ 0. So, for λ = 0, the only function
φ which solves the problem is the trivial solution φ(x) ≡ 0. Hence λ = 0 is not an eigenvalue.

(b) The Rayleigh quotient is the following relation between an eigenvalue λ and its corresponding
eigenfunction φ(x):

λ =

∫ 1

0
φ′(x)2 dx− φ(1)φ′(1) + φ(0)φ′(0)∫ 1

0
φ(x)2 dx

.

For this problem, using the conditions φ(0) = φ′(0) and φ(1) = −φ′(1), we can rewrite the Rayleigh quotient
as

λ =

∫ 1

0
φ′(x)2 dx + φ′(1)2 + φ′(0)2∫ 1

0
φ(x)2 dx

.

Since the square of a real number is always non-negative, then the numerator of this expression is the sum
of non-negative terms, so is non-negative; and the denominator is also non-negative. So their quotient λ is
also non-negative.

(c) For λ ≥ 0, the general solution of the ODE for φ is

φ(x) = A cos
√

λx + B sin
√

λx,

and its derivative is
φ′(x) = −A

√
λ sin

√
λx + B

√
λ cos

√
λx.

The condition φ(0) = φ′(0) gives A = B
√

λ, so

φ(x) = B(
√

λ cos
√

λx + sin
√

λx)

and
φ′(x) = B(−λ sin

√
λx +

√
λ cos

√
λx).

Then the condition φ(1) = −φ′(1) gives
√

λ cos
√

λ + sin
√

λ = λ sin
√

λ−
√

λ cos
√

λ,

or
2
√

λ cos
√

λ = (λ− 1) sin
√

λ.

Dividing by cos
√

λ and λ− 1 gives the desired equation.
(The graphs of tan

√
λ and 2

√
λ

λ−1 , with a few points of intersection marked, should be included here.)

4. For λ = −κ2, the general solution of the ODE for φ is φ(x) = A cosh κx+B sinhκx, and the condition
φ(0) = 0 gives A = 0, so φ(x) = B sinhκx and φ′(x) = Bκ cosh κx. Then the condition φ′(1) = 10φ(1)
becomes

Bκ cosh κ = 10B sinhκ.

This yields the equation
tanh κ =

κ

10
,

which can be seen to have a positive solution by graphing tanh κ and κ/10 as functions of κ. A corresponding
eigenfunction is φ(x) = sinh κx.

(The graphs of tanh κ and κ/10 should be included here as part of your answer.) The reason that the
graphs intersect at some point where κ > 0 is that the graph of κ/10 starts out below the graph of tanh κ
for κ near zero, because the derivative of tanh κ is 1 at κ = 0, so the slope of tanh κ is greater than that of
κ/10 at κ = 0. But for, say, κ = 100, tanh κ is near 1 and κ/10 = 10, so there the graph of κ/10 is above
that of tanh κ. So somewhere in between κ = 0 and κ = 10, the graphs must cross.
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5. Putting u(x, t) = φ(x)G(t) into the PDE and separating variables, we get

G′′(t) + βG′(t)
c2G(t)

=
φ′′(x)
φ(x)

= −λ,

which gives us the ODEs φ′′(x) + λφ(x) = 0 and

G′′(t) + βG′(t) + c2λG(t) = 0.

The boundary conditions on u at x = 0 and x = 1 give us that, for nontrivial solutions, φ(0) = φ(1) = 0.
As we already know, the eigenvalues for this eigenvalue problem for φ are λ = (nπ)2, with n ∈ {1, 2, 3, . . . },
and the corresponding eigenfunctions are φ(x) = sin(nπx).

Putting λ = (nπ)2 into the ODE for G gives

G′′(t) + βG′(t) + (cnπ)2G(t) = 0.

This is a linear ODE with constant coefficients, so solutions can be found by putting G(t) = ert into the
equation and solving for r. We get

r2 + βr + (cnπ)2 = 0,

whose solutions are

r =
−β +

√
β2 − 4c2n2π2

2
and r =

−β −
√

β2 − 4c2n2π2

2
.

We were given that β < 4n2π2c2, but as you might have guessed, this was a typo: the condition should
have been β2 < 4n2π2c2. Under this condition, the quantity under the radical in the formula will be negative,
so there will be two different solutions to the ODE, given by

G(t) = e−βt/2e±it
√

4n2π2c2−β2
,

or more conveniently,
G(t) = e−βt/2 cos(γnt) and e−βt/2 sin(γnt),

where γn = 1
2

√
4n2π2c2 − β2. So we can take

(1) u(x, t) =
∞∑

n=1

sin(nπx)e−βt/2 [An cos(γnt) + Bn sin(γnt)] ,

and hence

ut(x, t) =
∞∑

n=1

sin(nπx)
(−β

2
e−βt/2 [An cos(γnt) + Bn sin(γnt)] + e−βt/2γn [−An sin(γnt) + Bn cos(γnt)]

)
.

Substituting t = 0 into these equations and using the given initial conditions, we get, for all x ∈ [0, 1],

f(x) =
∞∑

n=1

An sin(nπx)

and

g(x) =
∞∑

n=1

(−β

2
An + γnBn

)
sin(nπx).

From the first of these equations, we get

(2) An = 2
∫ 1

0

f(x) sin(nπx) dx,
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and from the second we get
−β

2
An + γnBn = 2

∫ 1

0

g(x) sin(nπx) dx.

Therefore

Bn =
βAn

2γn
+

2
γn

∫ 1

0

g(x) sin(nπx) dx.

Using the formulas for An and γn from above, this gives

(3) Bn =
4√

4n2π2c2 − β2

∫ 1

0

(
β

2
f(x) + g(x)

)
sin(nπx) dx.

The solution to the problem is the series given in (1) for u(x, t), with coefficients An and Bn given in (2)
and (3).
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