Math 4163

Assignment 6

For problems 1 and 2 below, write $v(r, \theta)=G(r) \phi(\theta)$ and use separation of variables. You can use the solutions to the eigenvalue problem for ϕ and the ordinary differential equation for G which we have found in class without having to rederive them here. Your answer will be in the form of a series for $v(r, \theta)$.

1. Find the solution $v(r, \theta)$ of the following boundary-value problem for Laplace's equation on the quarter-circle:

$$
\begin{array}{rlrl}
v_{r r}+\frac{1}{r} v_{r}+\frac{1}{r^{2}} v_{\theta \theta} & =0 & & \text { for } 0 \leq r<1 \text { and } 0<\theta<\pi / 2, \\
v(r, 0) & =0 & & \text { for } 0 \leq r \leq 1, \\
v\left(r, \frac{\pi}{2}\right) & =0 & & \text { for } 0 \leq r \leq 1 \\
v_{r}(1, \theta) & =1 & & \text { for } 0 \leq \theta \leq \frac{\pi}{2} \\
\lim _{r \rightarrow 0} v(r, \theta) \text { exists } & & \text { for } 0 \leq \theta \leq \frac{\pi}{2}
\end{array}
$$

2. Find the solution $v(r, \theta)$ of the following boundary-value problem for Laplace's equation on the annulus:

$$
\begin{aligned}
v_{r r}+\frac{1}{r} v_{r}+\frac{1}{r^{2}} v_{\theta \theta} & =0 \quad \text { for } 3<r<4 \text { and }-\pi \leq \theta<\pi \\
v(3, \theta) & =0 \quad \text { for }-\pi \leq \theta<\pi \\
v(4, \theta) & =f(\theta) \quad \text { for }-\pi \leq \theta<\pi
\end{aligned}
$$

where

$$
f(\theta)= \begin{cases}0 & \text { for }-\pi \leq \theta \leq 0 \\ 1 & \text { for } 0<\theta<\pi\end{cases}
$$

3. Consider the boundary-value problem

$$
\begin{aligned}
\phi^{\prime \prime}(x)+\lambda \phi(x) & =0 \quad \text { for } 0 \leq x \leq 1, \\
\phi(0) & =\phi^{\prime}(0) \\
\phi(1) & =-\phi^{\prime}(1) .
\end{aligned}
$$

(a) Show that $\lambda=0$ is not an eigenvalue.
(b) Use the Rayleigh quotient to show that $\lambda \geq 0$.
(c) Show that the positive eigenvalues are the solutions of the equation

$$
\tan \sqrt{\lambda}=\frac{2 \sqrt{\lambda}}{\lambda-1}
$$

and, by graphing both sides of this equation and seeing where they intersect, draw a diagram showing the first few eigenvalues.
4. Show that for the problem

$$
\begin{aligned}
\phi^{\prime \prime}(x)+\lambda \phi(x) & =0 \quad \text { for } 0 \leq x \leq 1, \\
\phi(0) & =0 \\
\phi^{\prime}(1) & =10 \cdot \phi(1)
\end{aligned}
$$

there is a negative eigenvalue $\lambda=-\kappa^{2}$, by finding an equation for κ and showing graphically that the equation has a solution. Also give a formula for the corresponding eigenfunction $\phi(x)$.
5. Find the solution of the problem

$$
\begin{array}{rlrl}
u_{t t}+\beta u_{t} & =c^{2} u_{x x} & \quad \text { for } 0<x<1 \text { and } t>0, \\
u(0, t) & =0 & & \text { for } t \geq 0 \\
u(1, t) & =0 & \text { for } t \geq 0 \\
u(x, 0) & =f(x) & \text { for } 0 \leq x \leq 1 \\
u_{t}(x, 0) & =g(x) & & \text { for } 0 \leq x \leq 1
\end{array}
$$

You can assume that $0<\beta<4 \pi^{2} c^{2}$ (so also $\beta<4 n^{2} \pi^{2} c^{2}$ for all $n=1,2,3, \ldots$). Your answer will be a series for $u(x, t)$ with coefficients which are given in terms of integrals involving $f(x)$ and $g(x)$.

