Math 4163

Assignment 5

1. Find the solution of the problem

$$
\begin{aligned}
u_{x x}+u_{y y}=0 & \text { for } 0<x<2 \text { and } 0<y<3 \\
u_{x}(0, y)=0 & \text { for } 0 \leq y \leq 3 \\
u_{x}(2, y)=0 & \text { for } 0 \leq y \leq 3 \\
u(x, 0)=0 & \text { for } 0 \leq x \leq 2 \\
u(x, 3)=f(x) & \text { for } 0 \leq x \leq 2
\end{aligned}
$$

where

$$
f(x)= \begin{cases}0 & \text { for } 0 \leq x \leq 1 \\ 1 & \text { for } 1<x \leq 2\end{cases}
$$

(You can use the solution to the eigenvalue problem for $\phi(x)$ from the inside front cover of the book without having to rederive it here.) Your answer will be in the form of a series for $u(x, y)$. The coefficients in the series will be determined by the function f.
2. Consider the problem of finding the solution $u(x, y)$ of

$$
\begin{aligned}
u_{x x}+u_{y y}=0 & \text { for } 0<x<1 \text { and } 0<y<1 \\
u_{x}(0, y)=0 & \text { for } 0 \leq y \leq 1 \\
u_{x}(1, y)=0 & \text { for } 0 \leq y \leq 1 \\
u_{y}(x, 0)=0 & \text { for } 0 \leq x \leq 1 \\
u_{y}(x, 1)=f(x) & \text { for } 0 \leq x \leq 1
\end{aligned}
$$

where f is a function given by

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (n \pi x)
$$

for $0 \leq x \leq 1$.
(a) Use the method of separation of variables to show that u will be of the form

$$
u(x, y)=P_{0}+Q_{0} y+\sum_{n=1}^{\infty}\left(P_{n} \cosh (n \pi y)+Q_{n} \sinh (n \pi y)\right) \cos (n \pi x)
$$

Explain how you know that $Q_{n}=0$ for $n=0,1,2, \ldots$
(b) Use the boundary condition at $y=1$ to find expressions for the unknown constants P_{n} in terms of the given constants A_{n}. In particular, show that if A_{0} is not zero, then the problem does not have a solution; but on the other hand, if A_{0} does equal zero, then the problem does have solutions, but does not have a unique solution.

