Math 4163 Assignment 4

1. In this problem you'll find three different series for what looks like the same function.

(a) Let f(x) = x + 1. Find constants B_n such that

$$f(x) = \sum_{n=1}^{\infty} B_n \sin(n\pi x)$$

for 0 < x < 1.

(b) Let f(x) = x + 1. Find constants A_n such that

$$f(x) = \sum_{n=0}^{\infty} A_n \cos(n\pi x)$$

for 0 < x < 1.

(c) Let f(x) = x + 1. Find constants A_n and B_n such that

$$f(x) = A_0 + \sum_{n=1}^{\infty} [A_n \cos(n\pi x) + B_n \sin(n\pi x)]$$

for -1 < x < 1.

2. Use the method of separation of variables to find a solution of the problem

(1)
$$u_{tt} = u_{xx}$$
 for $0 < x < 1, t > 0$
(2) $u(0,t) = 0$ for $t > 0$
(3) $u(1,t) = 0$ for $t > 0$
(4) $u(x,0) = f(x)$ for $0 \le x \le 1$
(5) $u_t(x,0) = g(x)$ for $0 \le x \le 1$.

Step 1: Put $u(x,t) = \phi(x)G(t)$ and write down the ordinary differential equations satisfied by $\phi(x)$ and G(t). The equation for $\phi(x)$ should be the same as it was for the heat equation; the equation for G(t) will be slightly different.

Step 2a: Find the boundary conditions implied for $\phi(x)$ by conditions (2) and (3) above. Write down the eigenvalues and eigenfunctions for this boundary-value problem for $\phi(x)$. (This step will be the same as for the heat equation. You can just use the results we obtained before, you don't have to derive them again.)

Step 2b: Find the general solution of the ordinary differential equation for G(t). This step will be slightly different than for the heat equation; there will be two arbitrary constants.

Completion of Step 2: Write down the functions of the form $u(x,t) = \phi(x)G(t)$ you have found which satisfy (1), (2), and (3) above. These are the "separated solutions" of (1), (2), and (3).

Step 3: Set u(x,t) equal to a linear combination of all the separated solutions you found in Step 2. (This will be a series involving two sequences of arbitrary constants.) Use (4) to find formulas for some of these constants as integrals involving f(x). Then write down a formula for $u_t(x,t)$, and use (5) to find formulas for the remaining constants as integrals involving g(x). This will complete your solution of (1), (2), (3), (4), and (5).