Math 4163

Assignment 4

1. In this problem you'll find three different series for what looks like the same function.
(a) Let $f(x)=x+1$. Find constants B_{n} such that

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin (n \pi x)
$$

for $0<x<1$.
(b) Let $f(x)=x+1$. Find constants A_{n} such that

$$
f(x)=\sum_{n=0}^{\infty} A_{n} \cos (n \pi x)
$$

for $0<x<1$.
(c) Let $f(x)=x+1$. Find constants A_{n} and B_{n} such that

$$
f(x)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \cos (n \pi x)+B_{n} \sin (n \pi x)\right]
$$

for $-1<x<1$.
2. Use the method of separation of variables to find a solution of the problem

$$
\begin{aligned}
& \text { (1) } \quad u_{t t}=u_{x x} \text { for } 0<x<1, t>0 \\
& \text { (2) } u(0, t)=0 \text { for } t>0 \\
& \text { (3) } u(1, t)=0 \quad \text { for } t>0 \\
& \text { (4) } u(x, 0) \\
& \text { (5) } \quad u_{t}(x, 0) \text { for } 0 \leq x \leq 1 \\
& \text { (5) } 0 \text { for } 0 \leq x \leq 1 .
\end{aligned}
$$

Step 1: Put $u(x, t)=\phi(x) G(t)$ and write down the ordinary differential equations satisfied by $\phi(x)$ and $G(t)$. The equation for $\phi(x)$ should be the same as it was for the heat equation; the equation for $G(t)$ will be slightly different.

Step 2a: Find the boundary conditions implied for $\phi(x)$ by conditions (2) and (3) above. Write down the eigenvalues and eigenfunctions for this boundary-value problem for $\phi(x)$. (This step will be the same as for the heat equation. You can just use the results we obtained before, you don't have to derive them again.)

Step 2b: Find the general solution of the ordinary differential equation for $G(t)$. This step will be slightly different than for the heat equation; there will be two arbitrary constants.

Completion of Step 2: Write down the functions of the form $u(x, t)=\phi(x) G(t)$ you have found which satisfy (1), (2), and (3) above. These are the "separated solutions" of (1), (2), and (3).

Step 3: Set $u(x, t)$ equal to a linear combination of all the separated solutions you found in Step 2. (This will be a series involving two sequences of arbitrary constants.) Use (4) to find formulas for some of these constants as integrals involving $f(x)$. Then write down a formula for $u_{t}(x, t)$, and use (5) to find formulas for the remaining constants as integrals involving $g(x)$. This will complete your solution of (1), (2), (3), (4), and (5).

