Math 4163

Assignment 2

1.

(a) Show that $\{\cos (n \pi x)\}_{n=0,1,2,3, \ldots}$ is an orthogonal system on $[0,1]$.
(b) Find the constants c_{n} which make $\left\{c_{n} \cos (n \pi x)\right\}_{n=0,1,2,3, \ldots}$ an orthonormal system. (Note: c_{0} will not be the same as the rest of the c_{n} 's.)
(c) Suppose you want to represent the function $f(x)$ as

$$
f(x)=\sum_{n=0}^{\infty} A_{n} \cos (n \pi x)
$$

By equating the inner product of both sides of this equation and using your answer to part (b), find formulas for the constants A_{n}.
2. The representation found in part (c) of the preceding problem is called the Fourier cosine series of $f(x)$ on $[0,1]$. Find the Fourier cosine series of the function $f(x)=x^{2}$ on $[0,1]$. Evaluate the constants A_{n} as explicitly as you can.
3. Verify that each of the functions $u_{0}(x, y)=y$ and $u_{n}(x, y)=\sinh (n \pi y) \cos (n \pi x)$ for $n=1,2,3, \ldots$ satisfies the equation

$$
u_{x x}+u_{y y}=0
$$

and the conditions

$$
u_{x}(0, y)=u_{x}(1, y)=0, \quad u(x, 0)=0
$$

(These are called boundary conditions because they are conditions on the boundary of the unit square in the $x-y$ plane.) Show that any linear combination

$$
u(x, y)=A_{0} y+\sum_{n=1}^{N} A_{n} \sinh (n \pi y) \cos (n \pi x)
$$

satisfies the same differential equation and the same boundary conditions.

