Math 4163

Assignment 10

1. Find the Green's function $G(\mathbf{x} ; \mathbf{y})$ for the Laplacian in the quarter-plane

$$
\Omega=\left\{\left(y_{1}, y_{2}\right): y_{1}>0 \quad \text { and } \quad y_{2}>0\right\}
$$

with Dirichlet boundary conditions. That is, for fixed $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \Omega$, find the solution of the problem

$$
\frac{\partial^{2} G}{\partial y_{1}^{2}}+\frac{\partial^{2} G}{\partial y_{2}^{2}}=\delta(\mathbf{x}-\mathbf{y})
$$

for $\mathbf{y}=\left(y_{1}, y_{2}\right) \in \Omega$, with boundary condition

$$
G(\mathbf{x}, \mathbf{y})=0 \quad \text { for } \mathbf{y} \in \partial \Omega
$$

Here $\partial \Omega$, the boundary of Ω, is the union of the two half lines $\left\{y_{1}=0\right.$ and $\left.y_{2}>0\right\}$ and $\left\{y_{2}=0\right.$ and $\left.y_{1}>0\right\}$.
This problem is easily done using the method of images. First, for fixed $\mathbf{x} \in \Omega$, write down the Green's function for the Laplacian on the half-plane (call it $H(\mathbf{x}, \mathbf{y})$), which you can find in the lecture notes from Week 14. Then you need to find the right function v to add to $H(\mathbf{x}, \mathbf{y})$ in order to get the desired Green's function $G(\mathbf{x}, \mathbf{y})$. To do this, you should take $v=-H(\tilde{\mathbf{x}}, \mathbf{y})$, where $\tilde{\mathbf{x}}$ is a suitably chosen point outside of Ω.

Describe the correct choice for \tilde{x}, write down a formula for $G(\mathbf{x}, \mathbf{y})$ as a function of $x_{1}, x_{2}, y_{1}, y_{2}$, and show by direct computation that $G(\mathbf{x}, \mathbf{y})=0$ when $\mathbf{y} \in \partial \Omega$ (that is, when either $y_{1}=0$ or $y_{2}=0$).
2. Find the Green's function for the Laplacian in the half-plane

$$
\Omega=\left\{\left(y_{1}, y_{2}\right): \quad y_{2}>0\right\}
$$

with Neumann boundary conditions. That is, for fixed $\mathbf{x} \in \Omega$, find the solution of the problem

$$
\frac{\partial^{2} G}{\partial y_{1}^{2}}+\frac{\partial^{2} G}{\partial y_{2}^{2}}=\delta(\mathbf{x}-\mathbf{y})
$$

for $\mathbf{y}=\left(y_{1}, y_{2}\right) \in \Omega$, with boundary condition

$$
\frac{\partial G}{\partial y_{2}}(\mathbf{x}, \mathbf{y})=0 \quad \text { for } \mathbf{y} \in \partial \Omega
$$

Here $\partial \Omega$, the boundary of Ω, is the line $\left\{y_{2}=0\right\}$.
Again, this is easily done by the method of images. First, for fixed $\mathbf{x} \in \Omega$, write down the Green's function for the Laplacian on the entire plane (call it $\Phi(\mathbf{x}, \mathbf{y})$), which you can find in the lecture notes from Week 14. Then you need to find the right function v to add to $\Phi(\mathbf{x}, \mathbf{y})$ in order to get the desired Green's function $G(\mathbf{x}, \mathbf{y})$. To do this, you should take $v=+\Phi(\tilde{\mathbf{x}}, \mathbf{y})$, where $\tilde{\mathbf{x}}$ is a suitably chosen point outside of Ω.

Describe the correct choice for \tilde{x}, write down a formula for $G(\mathbf{x}, \mathbf{y})$ as a function of $x_{1}, x_{2}, y_{1}, y_{2}$, and show by direct computation that $\frac{\partial G}{\partial y_{2}}(\mathbf{x}, \mathbf{y})=0$ when $\mathbf{y} \in \partial \Omega$ (that is, when $y_{2}=0$).
3. Let Ω be the unit disc in the plane, given in polar coordinates by

$$
\Omega=\{(r, \theta): 0 \leq r<1 \text { and }-\pi \leq \theta \leq \pi\}
$$

Earlier in the semester we used separation of variables to solve the boundary-value problem for the Laplacian on Ω :

$$
\begin{aligned}
\Delta u & =0 \quad \text { for }(r, \theta) \in \Omega \\
u(1, \theta) & =f(\theta) .
\end{aligned}
$$

The solution was given by

$$
u(r, \theta)=A_{0}+\sum_{n=1}^{\infty} r^{n}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right)
$$

where

$$
\begin{aligned}
& A_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\bar{\theta}) d \bar{\theta} \\
& A_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\bar{\theta}) \cos n \bar{\theta} d \bar{\theta} \quad \text { for } n \geq 1 \\
& B_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\bar{\theta}) \sin n \bar{\theta} d \bar{\theta} \quad \text { for } n \geq 1
\end{aligned}
$$

In this problem we'll use the above solution to obtain a Green's formula for u.
(a) Substitute the integrals for A_{n} and B_{n} into the formula for u, interchange the summation and the integral, and use a trigonometric identity to show that

$$
u(r, \theta)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\bar{\theta})\left[\frac{1}{2}+\sum_{n=1}^{\infty} r^{n} \cos n(\theta-\bar{\theta})\right] d \bar{\theta}
$$

(b) Use the formula for the sum of a geometric series,

$$
\sum_{n=1}^{\infty} z^{n}=\frac{z}{1-z} \quad \text { when }|z|<1
$$

to show that

$$
\frac{1}{2}+\sum_{n=1}^{\infty}\left(r e^{i \theta}\right)^{n}=\frac{1+r e^{i \theta}}{2\left(1-r e^{i \theta}\right)}
$$

when $0 \leq r<1$.
(c) Multiplying the numerator and denominator of the fraction in the preceding equation by $\left(1-r e^{-i \theta}\right)$, show that

$$
\frac{1}{2}+\sum_{n=1}^{\infty}\left(r e^{i \theta}\right)^{n}=\frac{1-r^{2}+2 i r \sin \theta}{2\left(1+r^{2}-2 r \cos \theta\right)}
$$

(d) By taking the real part of the preceding equation, show that

$$
\frac{1}{2}+\sum_{n=1}^{\infty} r^{n} \cos n \theta=\frac{1-r^{2}}{2\left(1+r^{2}-2 r \cos \theta\right)}
$$

and conclude that

$$
u(r, \theta)=\int_{-\pi}^{\pi} f(\bar{\theta}) G(r ; \theta, \bar{\theta}) d \bar{\theta}
$$

where

$$
G(r ; \theta, \bar{\theta})=\frac{1}{2 \pi}\left[\frac{1-r^{2}}{1+r^{2}-2 r \cos (\theta-\bar{\theta})}\right]
$$

