Math 4163 Assignment 10

1. Find the Green's function $G(\mathbf{x}; \mathbf{y})$ for the Laplacian in the quarter-plane

$$\Omega = \{ (y_1, y_2) : y_1 > 0 \text{ and } y_2 > 0 \}$$

with Dirichlet boundary conditions. That is, for fixed $\mathbf{x} = (x_1, x_2) \in \Omega$, find the solution of the problem

$$\frac{\partial^2 G}{\partial y_1^2} + \frac{\partial^2 G}{\partial y_2^2} = \delta(\mathbf{x} - \mathbf{y})$$

for $\mathbf{y} = (y_1, y_2) \in \Omega$, with boundary condition

$$G(\mathbf{x}, \mathbf{y}) = 0$$
 for $\mathbf{y} \in \partial \Omega$.

Here $\partial\Omega$, the boundary of Ω , is the union of the two half lines $\{y_1 = 0 \text{ and } y_2 > 0\}$ and $\{y_2 = 0 \text{ and } y_1 > 0\}$.

This problem is easily done using the method of images. First, for fixed $\mathbf{x} \in \Omega$, write down the Green's function for the Laplacian on the half-plane (call it $H(\mathbf{x}, \mathbf{y})$), which you can find in the lecture notes from Week 14. Then you need to find the right function v to add to $H(\mathbf{x}, \mathbf{y})$ in order to get the desired Green's function $G(\mathbf{x}, \mathbf{y})$. To do this, you should take $v = -H(\tilde{\mathbf{x}}, \mathbf{y})$, where $\tilde{\mathbf{x}}$ is a suitably chosen point outside of Ω .

Describe the correct choice for \tilde{x} , write down a formula for $G(\mathbf{x}, \mathbf{y})$ as a function of x_1, x_2, y_1, y_2 , and show by direct computation that $G(\mathbf{x}, \mathbf{y}) = 0$ when $\mathbf{y} \in \partial \Omega$ (that is, when either $y_1 = 0$ or $y_2 = 0$).

2. Find the Green's function for the Laplacian in the half-plane

$$\Omega = \{ (y_1, y_2) : y_2 > 0 \}$$

with Neumann boundary conditions. That is, for fixed $\mathbf{x} \in \Omega$, find the solution of the problem

$$\frac{\partial^2 G}{\partial y_1^2} + \frac{\partial^2 G}{\partial y_2^2} = \delta(\mathbf{x} - \mathbf{y})$$

for $\mathbf{y} = (y_1, y_2) \in \Omega$, with boundary condition

$$\frac{\partial G}{\partial y_2}(\mathbf{x}, \mathbf{y}) = 0 \quad \text{for } \mathbf{y} \in \partial \Omega.$$

Here $\partial \Omega$, the boundary of Ω , is the line $\{y_2 = 0\}$.

Again, this is easily done by the method of images. First, for fixed $\mathbf{x} \in \Omega$, write down the Green's function for the Laplacian on the entire plane (call it $\Phi(\mathbf{x}, \mathbf{y})$), which you can find in the lecture notes from Week 14. Then you need to find the right function v to add to $\Phi(\mathbf{x}, \mathbf{y})$ in order to get the desired Green's function $G(\mathbf{x}, \mathbf{y})$. To do this, you should take $v = +\Phi(\tilde{\mathbf{x}}, \mathbf{y})$, where $\tilde{\mathbf{x}}$ is a suitably chosen point outside of Ω .

Describe the correct choice for \tilde{x} , write down a formula for $G(\mathbf{x}, \mathbf{y})$ as a function of x_1, x_2, y_1, y_2 , and show by direct computation that $\frac{\partial G}{\partial y_2}(\mathbf{x}, \mathbf{y}) = 0$ when $\mathbf{y} \in \partial \Omega$ (that is, when $y_2 = 0$).

3. Let Ω be the unit disc in the plane, given in polar coordinates by

$$\Omega = \{ (r, \theta) : 0 \le r < 1 \text{ and } -\pi \le \theta \le \pi \}.$$

Earlier in the semester we used separation of variables to solve the boundary-value problem for the Laplacian on Ω :

$$\Delta u = 0 \quad \text{for } (r, \theta) \in \Omega$$
$$u(1, \theta) = f(\theta).$$

The solution was given by

$$u(r,\theta) = A_0 + \sum_{n=1}^{\infty} r^n \left(A_n \cos n\theta + B_n \sin n\theta\right),$$

where

$$A_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\bar{\theta}) \ d\bar{\theta},$$

$$A_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\bar{\theta}) \cos n\bar{\theta} \ d\bar{\theta} \quad \text{for } n \ge 1,$$

$$B_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\bar{\theta}) \sin n\bar{\theta} \ d\bar{\theta} \quad \text{for } n \ge 1.$$

In this problem we'll use the above solution to obtain a Green's formula for u.

(a) Substitute the integrals for A_n and B_n into the formula for u, interchange the summation and the integral, and use a trigonometric identity to show that

$$u(r,\theta) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\bar{\theta}) \left[\frac{1}{2} + \sum_{n=1}^{\infty} r^n \cos n(\theta - \bar{\theta}) \right] d\bar{\theta}.$$

(b) Use the formula for the sum of a geometric series,

$$\sum_{n=1}^{\infty} z^n = \frac{z}{1-z} \quad \text{when } |z| < 1,$$

to show that

$$\frac{1}{2} + \sum_{n=1}^{\infty} (re^{i\theta})^n = \frac{1 + re^{i\theta}}{2(1 - re^{i\theta})}$$

when $0 \leq r < 1$.

(c) Multiplying the numerator and denominator of the fraction in the preceding equation by $(1 - re^{-i\theta})$, show that

$$\frac{1}{2} + \sum_{n=1}^{\infty} (re^{i\theta})^n = \frac{1 - r^2 + 2ir\sin\theta}{2(1 + r^2 - 2r\cos\theta)}$$

(d) By taking the real part of the preceding equation, show that

$$\frac{1}{2} + \sum_{n=1}^{\infty} r^n \cos n\theta = \frac{1 - r^2}{2(1 + r^2 - 2r\cos\theta)},$$

and conclude that

$$u(r,\theta) = \int_{-\pi}^{\pi} f(\bar{\theta}) G(r;\theta,\bar{\theta}) \ d\bar{\theta},$$

where

$$G(r;\theta,\bar{\theta}) = \frac{1}{2\pi} \left[\frac{1-r^2}{1+r^2-2r\cos(\theta-\bar{\theta})} \right]. \label{eq:G}$$