Solutions to problems on Assignment 11

Problem 3, section 9.5.

I solved this in class on Wednesday, using a couple of different methods.

Problem 9, section 9.5.

We have to find the solution to $10 u_{t}=u_{x x}$ on $0<x<5, t>0$; satisfying the boundary conditions $u(0, t)=u(5, t)=0$ for $t>0$; and the initial condition $u(x, 0)=25$ for $0<x<5$.

For this problem $k=1 / 10$ (since the equation can be rewritten as $u_{t}=(0.1) u_{x x} ; L=5$; and the initial temperature profile is the constant function $f(x)=25$. According to Theorem 1 on page 622 , the solution is given by

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-n^{2} \pi^{2}\left(\frac{1}{10}\right) t / 5^{2}} \sin (n \pi x / 5)
$$

or

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-n^{2} \pi^{2} t / 250} \sin (n \pi x / 5)
$$

where B_{n} is given by

$$
B_{n}=\frac{2}{5} \int_{0}^{5} 25 \sin \left(\frac{n \pi x}{5}\right) d x
$$

To compute this integral, make the substitution $u=n \pi x / 5$, so $d u=\frac{n \pi}{5} d x$ and $d x=\frac{5}{n \pi} d u$. The limits of the integral change from $x=0$ and $x=5$ to $u=n \pi \cdot 0 / 5=0$ and $u=n \pi \cdot 5 / 5=n \pi$, and we get

$$
\begin{aligned}
B_{n} & =\frac{2}{5} \int_{0}^{n \pi} 25 \sin u\left(\frac{5}{n \pi} d u\right) \\
& =\frac{50}{n \pi} \int_{0}^{n \pi} \sin u d u=\frac{50}{n \pi}\left(-\left.\cos u\right|_{0} ^{n \pi}\right)=\frac{50}{n \pi}(-\cos n \pi+1) \\
& = \begin{cases}\frac{100}{n \pi} & (n \text { odd }) \\
0 & (n \text { even }) .\end{cases}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
u(x, t) & =\sum_{n \text { odd }} \frac{100}{n \pi} e^{-n^{2} \pi^{2} t / 250} \sin (n \pi x / 5) \\
& =\frac{100}{\pi}\left(\sin (\pi x / 5) e^{-\pi^{2} t / 250}+\frac{1}{3} \sin (3 \pi x / 5) e^{-9 \pi^{2} t / 250}+\frac{1}{5} \sin (5 \pi x / 5) e^{-25 \pi^{2} t / 250}+\ldots\right)
\end{aligned}
$$

Problem 13, section 9.5.

This problem is similar to problem 9, the only differences being that here $L=40 \mathrm{~cm}$, the initial temperature profile is given by the constant function $f(x)=100$, and the value of k will be different (depending on what material the rod is made of).
(a) As in the solution of problem 9 above, we get

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-n^{2} \pi^{2} k t / 1600} \sin (n \pi x / 40)
$$

where B_{n} is given by

$$
B_{n}=\frac{2}{40} \int_{0}^{40} 100 \sin \left(\frac{n \pi x}{40}\right) d x
$$

Computing B_{n} as before, we find that

$$
B_{n}=\left\{\begin{array}{l}
\frac{400}{n \pi} \quad(n \text { odd }) \\
0 \quad(n \text { even })
\end{array}\right.
$$

(b) From part (a), we have

$$
u(x, t)=\frac{400}{\pi}\left(\sin (\pi x / 40) e^{-\pi^{2} k t / 1600}+\frac{1}{3} \sin (3 \pi x / 40) e^{-9 \pi^{2} k t / 1600}+\frac{1}{5} \sin (5 \pi x / 40) e^{-25 \pi^{2} k t / 1600}+\ldots\right)
$$

Since the rod is made of copper, we see from the table on page 622 that the value of the thermal diffusivity k is $1.15 \mathrm{~cm}^{2} / \mathrm{s}$. Since $k / 1600=(1.15) / 1600=0.00071875$, we find that at $t=5 \mathrm{~min}$, or $t=300$ seconds, and $x=20$, the first term in the series for $u(x, t)$ has the value

$$
\frac{400}{\pi} \sin \left(\pi \frac{20}{40}\right) e^{-\pi^{2}(0.0007)(300)}=(127.3) \times 1 \times e^{-2.128} \approx 15.2
$$

The second term in the series for $u(x, t)$ has the value

$$
\frac{400}{3 \pi} \sin \left(3 \pi \frac{20}{40}\right) e^{-9 \pi^{2}(0.0007)(300)}=(42.4) \times-1 \times e^{-19.2}
$$

and since $e^{-19} \approx 6 \times 10^{-9}$, this term is negligible. The third and succeeding terms are even smaller, so we can assume that u is approximately equal to the first term. Hence $u \approx 15.2^{\circ}$ C.
(c) Since the rod is made of concrete, we see from the table on page 622 that the value of k is $0.005 \mathrm{~cm}^{2} / \mathrm{s}$. So $k / 1600=3.125 \times 10^{-6}$, and at $x=20$ the first term in the series for $u(x, t)$ is

$$
\frac{400}{\pi} \sin \left(\pi \frac{20}{40}\right) e^{-\pi^{2} t\left(3.125 \times 10^{-6}\right)}=127.3 e^{\left(-3.1 \times 10^{-5}\right) t}
$$

Setting equal to 15 and solving for t, we find that

$$
t=\frac{-\ln \left(\frac{15}{127.3}\right)}{3.1 \times 10^{-5}}=0.69 \times 10^{5} \text { seconds }=19.2 \text { hours }
$$

