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Instructions Work all of the following problems in the space provided. If there is not enough room, you may
write on the back sides of the pages. Give thorough ezplanations to receive full credit.

1. (18 points) Suppose = = t* + ¢, y = sin(¢?). Find
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2. (18 points) A curve is given by the vector equation r = (5¢,3sin¢, 612 + 4t).
a) Find a vector which is tangent to the curve at the origin (0,0,0). @
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b) Find a parametric equation for the tangent line to the curve at the origin.
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c¢) Find the angle between the curve and the z-axis at the origin. @
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3. (24 points) Find the area inside the small loop of the curve r = 1 — 2sin 6 (shaded area in the diagram).
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. (14 points) Find the length of the curve given in polar coordinates by r = e3 for 0<H< 1.
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5. (12 points) A curve is given in polar coordinates by r =

. Sketch the curve, identify which kind
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of conic it is, and give the equation of the directrix.
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6. (12 points) Consider the surface in zyz-space defined by the equation 922 — 4y> — 362> 4 36 = 0.

a) Sketch the trace of the surface in the zy-plane, and find the vertices.
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b) Sketch the trace of the surface in the yz-plane, and find the vertices.
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7. (18 points) Line L, is given by the vector equation r = (1,-6,2) + t(1,2,1), and line L, is given by the
vector equation r = (0,4,1) +#(2,1,2). The lines intersect at the point (8,8,9). Find an equation for the
plane containing lines Ly and L.
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8. (18 points) Plane P is given by the equation 3z +y = 6 and plane P, is given by the equation z + 6z = 3.
Find parametric equations for the line of intersection of the two planes.
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9. (12 points) A surface is given in rectangular coordinates by the equation 22 = z? + 42,

a) Give an equation of the surface in cylindrical coordinates, simplifying your answer as much as possible.
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{C] b) Given an equation of the surface in spherical coordinates, simplifying your answer as much as possible.
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10. (18 points) Use the integral test to determine whether the series
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11. (24 points) Find the interval of convergence of the power series
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12. (12 points) Suppose f(z) = sn;m Tiauas ('31 3]

a) Find a power series representation for f(z). You do not have to give a formula for the terms in the
[6 j series, but you should give at least the first four terms of the series, not including zero terms. (Note: for
this function, using the formula for the Maclaurin series would be too complicated; use another method

instead.)
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