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Instructions Work all of the following problems in the space provided. If there is not enough room, you may
write on the back sides of the pages. Give thorough ezplanations to receive full credit.

1. (8 points) Find the sum of the series 9 — 8 + % - %2— +.... _
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2. (20 points) Determine (with explanation) whether the series is convergent or divergent.
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3. (20 points) Determine (with explanation) whether the series Z L___

is absolutely convergent, con-
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4. (20 points) Find the radius of convergence and interval of convergence of the power series Z x ABSoLYTE
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5. (20 points) Find the Maclaurin series for f(z) = (1 + x)~2, showing all work. You do not have to give a
formula for the terms in the series, but you should give at least the first four terms of the series.
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6. (12 points) Suppose f(z) = 1T

a) Find a power series representation for f(z). You do not have to give a formula for the terms in the
series, but you should give at least the first four terms of the series, not including zero terms. (Note: for

this function, using the formula for the Maclaurin series would be too complicated; use another method
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b) Use your answer to part a) to find a series whose sum is fol f(z) dz. (Give at least the first four terms of

the series.)



