1. (12 points) Suppose \(x = t + \sin t, \ y = 1 - \cos t \). Find

 a) \(\frac{dy}{dx} = \frac{\left(\frac{dy}{dt} \right)^2}{\left(\frac{dx}{dt} \right)} = \frac{\sin t}{1 + \cos t} \)

 b) \(\frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx} \right)}{\frac{dx}{dt}} = \frac{\frac{d}{dt} \left(\frac{\sin t}{1 + \cos t} \right)}{1 + \cos t} = \frac{\left(1 + \cos t \right) \cos t - \sin t \sin t}{(1 + \cos t)^2} \)

 \[\frac{\cos t + \cos^2 t + \sin^2 t}{(1 + \cos t)^2} = \frac{\cos t + 1}{(1 + \cos t)^3} \]

2. (18 points) The diagram shows the curve given by \(x = t^3 + t, \ y = t - t^2 \). The shaded region lies between the curve and the x-axis. Find its area.

 \[
y = 0 \quad \text{when} \quad t - t^2 = 0 \]

 \[t(1 - t) = 0 \quad \text{or} \quad t = 0 \quad \text{or} \quad t = 1. \]

 When \(t = 0 \), \(x = 0 \); and when \(t = 1 \), \(x = 2 \).

 Area = \(\int_{x=0}^{x=2} y \, dx \) = \(\int_{t=0}^{t=1} (t-t^2)(3t^2+1) \, dt \)

 \(\) \(\) \(\) \(\) \(\)

 \(= \int_{0}^{1} \left(3t^3 - 3t^4 + t - t^2 \right) \, dt \)

 \(= \left[\frac{3t^4}{4} - \frac{3t^5}{5} + \frac{t^2}{2} - \frac{t^3}{3} \right]_0 \)

 \(= \left(\frac{3}{4} - \frac{3}{5} + \frac{1}{2} - \frac{1}{3} \right) - (0) = \frac{45 - 36 + 30 - 20}{60} = \frac{19}{60} \)
3. (10 points) Use an integral to find the length of the curve given by \(x = 1 + 2 \sin t \), \(y = 3 + 2 \cos t \), for \(0 \leq t \leq \frac{\pi}{10} \).

\[
\text{length} = \int_{0}^{\pi/10} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt = \int_{0}^{\pi/10} \sqrt{(2 \cos t)^2 + (-2 \sin t)^2} \, dt =
\]

\[
= \int_{0}^{\pi/10} \sqrt{4 \cos^2 t + 4 \sin^2 t} \, dt = \int_{0}^{\pi/10} \sqrt{4} \, dt = \int_{0}^{\pi/10} 2 \, dt =
\]

\[
\left[2t \right]_{t=0}^{t=\pi/10} = \frac{2\pi}{10} = \sqrt{\frac{\pi}{5}}.
\]

4. (10 points) A curve is given in polar coordinates by the equation \(r = 5 \cos \theta \).

a) Find a Cartesian equation for the curve.

\[
r = 5 \cos \theta \implies r^2 = 5r \cos \theta \implies \frac{x^2 + y^2}{r} = 5 \implies \frac{x^2}{5} + \frac{y^2}{5} = \frac{x}{5}.
\]

b) Complete the square in the Cartesian equation to put it in the form of the equation of a circle. Give the center and radius of the circle, and sketch the circle.

\[
x^2 - 5x + y^2 = 0
\]

\[
\left(x - \frac{5}{2}\right)^2 + y^2 = \frac{25}{4}
\]

This is a circle with radius \(\frac{5}{2} \) and center \(\left(\frac{5}{2}, 0\right) \).

5. (14 points) Find the slope of the tangent line to the polar curve \(r = 2 - 3 \sin \theta \) at the point where \(\theta = 0 \) (see diagram).

\[
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2 \cos \theta - 6 \sin \theta \cos \theta}{-2 \sin \theta - (3 \cos^2 \theta + (\sin \theta)(-\sin \theta))}
\]

When \(\theta = 0 \),

\[
\frac{dy}{dx} = \frac{2 \cos 0 - 6 \sin 0 \cos 0}{-2 \sin 0 - 3 \cos^2 0 + 3 \sin^2 0} = \frac{2 - 0}{0 - 3 + 0} = \frac{-2}{3}.
\]
6. (18 points) Find the area of one loop of the curve \(r = \sin 6\theta \) (see diagram).

The loop begins at the origin at \(\theta = 0 \). The tip of the loop is at \(\theta = \frac{\pi}{12} \) \((15^{\circ})\) and \(r = 1 \); and the loop returns to the origin at \(\theta = \frac{\pi}{6} \) \((30^{\circ})\).

So one loop is covered by the range \(0 \leq \theta \leq \frac{\pi}{6} \).

The area is

\[
\frac{1}{2} \int_0^{\pi/6} r^2 \, d\theta = \frac{1}{12} \int_0^{\pi/6} \sin^2 6\theta \, d\theta = \frac{1}{12} \int_0^{\pi/6} \sin^2 u \, du = \frac{\pi}{24}.
\]

7. (18 points) Find the area inside the lemniscate \(r^2 = 6 \cos 2\theta \) and outside the circle \(r = \sqrt{3} \).

The curves \(r^2 = 6 \cos 2\theta \) and \(r = \sqrt{3} \) \((r^2 = 3)\)

intersect when \(6 \cos 2\theta = 3 \),

or \(\cos 2\theta = \frac{1}{2} \)

\(2\theta = \frac{\pi}{3}, \frac{5\pi}{3}, \ldots \)

\(\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \ldots \)

The intersection in the first quadrant is at \(\theta = \frac{\pi}{6} \). The total area will be 4 times the area in the first quadrant, which is

\[
4 \left[\int_0^{\pi/6} \frac{1}{2} (6 \cos 2\theta) \, d\theta - \int_0^{\pi/6} \frac{1}{2} \cdot 3 \, d\theta \right] = \frac{\pi}{6} \left[\frac{12 \sin 2\theta}{2} \right]_0^{\pi/6} - \left[6\theta \right]_0^{\pi/6}
\]

\[
= \left[\frac{12 \sin 2\theta}{2} \right]_0^{\pi/6} - \left[6\theta \right]_0^{\pi/6}
\]

\[
= (12 \sin \frac{\pi}{3} - 0) - (6 \cdot \frac{\pi}{6} - 0)
\]

\[
= 3\sqrt{3} - \pi
\]