Linear Algebra, Spring 2016
Worksheet, April 14

Core Concepts:

- Vector Spaces
- span, linear independence, basis, dimension, subspaces
- Linear Transformations
- kernel, range, isomorphism
- Solving Systems of Linear Equations
- homogeneous systems, inhomogeneous systems

The following statements explore the relationships between the core concepts and other topics from the class. Try to prove each statement.

1. If $\operatorname{dim} V=n$, then the following statements are equivalent
(a) $\vec{v}_{1}, \ldots, \vec{v}_{n}$ is a basis of V
(b) $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent
(c) $\vec{v}_{1}, \ldots, \vec{v}_{n}$ span V
2. Let $L: V \rightarrow W$ be a linear transformation. Then Ker L is a subspace of V, Range L is a subspace of W.
3. If U is a subspace of V, then $L(U)=\{L(\vec{u}) \mid \vec{u} \in U\}$ is a subspace of W, and $\operatorname{dim} L(U) \leq \operatorname{dim} U$. If L is an isomorphism then $\operatorname{dim} L(U)=\operatorname{dim} U$.
4. If U is a subspace of W, then $L^{-1}(U)=\{\vec{v} \in V \mid L(\vec{v}) \in U\}$ is a subspace of V. If U is contained in the range of L, then $\operatorname{dim} L^{-1}(U) \geq \operatorname{dim} U$.
5. If $\vec{v}_{1}, \ldots, \vec{v}_{n}$ is a basis of V, and $\vec{w}_{1}, \ldots, \vec{w}_{m}$ are any vectors in W, then there is exactly one linear transformation $L: V \rightarrow W$ such that $L\left(\overrightarrow{v_{i}}\right)=\overrightarrow{w_{i}}$.
6. Let $\vec{v}_{1}, \ldots, \vec{v}_{n}$ be vectors in V. Let $L: \mathbb{R}^{n} \rightarrow V$ be the linear transformation with $L\left(\overrightarrow{e_{i}}\right)=\overrightarrow{v_{i}}$. Then
(a) $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent if and only if $\operatorname{Ker} L=\{\overrightarrow{0}\}$.
(b) $\vec{v}_{1}, \ldots, \vec{v}_{n}$ span V if and only if Range $L=V$.
7. Let $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis of $V, L: V \rightarrow W$ be a linear transformation, and $\overrightarrow{w_{i}}=L\left(\overrightarrow{v_{i}}\right)$ for $i=1, \ldots, n$. Then
(a) Ker $L=\{\overrightarrow{0}\}$ if and only if $\vec{w}_{1}, \ldots, \vec{w}_{m}$ are linearly independent.
(b) Range $L=W$ if and only if $\vec{w}_{1}, \ldots, \vec{w}_{m}$ span W.
8. $L: V \rightarrow W$ is an isomorphism if and only if Range $L=W$ and $\operatorname{Ker} L=\{\overrightarrow{0}\}$.
9. Let $\vec{v}_{1}, \ldots, \vec{v}_{n}$ be a basis of V. Then a linear transformation $L: V \rightarrow W$ is an isomorphism if and only if $L\left(\overrightarrow{v_{1}}\right), \ldots, L\left(\overrightarrow{v_{n}}\right)$ is a basis of W.
10. Let $L: V \rightarrow W$ be an isomorphism. Recall that this means L is one-to-one and onto, so the inverse function $L^{-1}: W \rightarrow V$ exists and is defined by

$$
L^{-1}(\vec{w})=\vec{v} \text { where } \vec{v} \text { is the unique vector with } \vec{w}=L(\vec{v}) \text {. }
$$

Show that L^{-1} is a linear transformation. Note: L^{-1} is automatically one-to-one and onto because L is (this is a general fact about inverse functions), so L^{-1} is in fact an isomorphism.
11. What is the domain and target of the function $L \circ L^{-1}$? What is the formula for this function? Same questions for $L^{-1} \circ L$.
12. Let U, V, W be vector spaces. If $K: U \rightarrow V$ is a linear transformation and $L: V \rightarrow$ W is a linear transformation, then $L \circ K$ is a linear transformation.
13. Let

$$
\operatorname{Lin}(V, W)=\{L: V \rightarrow W \mid L \text { is a linear transformation }\}
$$

Define vector addition and scalar multiplication operations on this set by

$$
(L+K)(\vec{v})=L(\vec{v})+K(\vec{v}), \quad(\lambda L)(\vec{v})=\lambda \vec{v} .
$$

Then $\operatorname{Lin}(V, W)$ is a vector space with these operations. Remark: An important special case is when $W=\mathbb{R}$, so the vector space is $\operatorname{Lin}(V, \mathbb{R})$. This vector space is called the dual of V and is usually denoted V^{*}.
14. The vector space $\operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ can be identified with the vector space $M_{m, n}$ of all $m \times n$ matrices. More precisely: There is an obvious linear transformation $\operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right) \rightarrow M_{m, n}$, and it is an isomorphism. What is this obvious linear transformation and why is it an isomorphism?
15. Let A be an $m \times n$ matrix and let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the linear transformation $L(\vec{x})=A \vec{x}$.
(a) Range $L=\operatorname{col}$ space A
(b) $\operatorname{Ker} L=$ null space A
(c) dim Range $L=\operatorname{rank} A$
(d) $\operatorname{dim} \operatorname{Ker} L=$ nullity A
(e) \vec{x} is a solution to $A \vec{x}=\overrightarrow{0}$ (homogeneous equation) if and only if $\vec{x} \in \operatorname{Ker} L$
(f) the set of solutions to $A \vec{x}=0$ is Ker L
(g) $A \vec{x}=\vec{b}$ (inhomogeneous equation) has a solution if and only if $\vec{b} \in$ Range L
(h) Let $\overrightarrow{x_{0}}$ be a fixed vector with $A \overrightarrow{x_{0}}=\vec{b}$. Then an arbitrary solution to $A \vec{x}=\vec{b}$ can be written as $\vec{x}=\overrightarrow{x_{0}}+\overrightarrow{x_{h}}$ with $\overrightarrow{x_{h}} \in \operatorname{Ker} L$. Geometrically, the set of solutions to $A \vec{x}=\vec{b}$ is the subspace Ker L shifted by $\overrightarrow{x_{0}}$ (hence an affine space).
(i) L is an isomorphism if and only if A is nonsingular.
(j) If L is an isomorphism, then $L^{-1}(\vec{x})=A^{-1} \vec{x}$.
16. Let $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis of V and let $L: V \rightarrow \mathbb{R}^{n}$ be the function $L(\vec{v})=$ $[\vec{v}]_{B}$. Then L is an isomorphism.
17. Let $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ and $B^{\prime}=\left\{\vec{v}_{1}^{\prime}, \ldots, \vec{v}_{n}^{\prime}\right\}$ be two bases of V. Let $\phi_{B}: V \rightarrow \mathbb{R}^{n}$ be $\phi_{B}(\vec{v})=[\vec{v}]_{B}$ (i.e. take B coordinates) and $\phi_{B^{\prime}}: V \rightarrow \mathbb{R}^{n}$ be $\phi_{B^{\prime}}(\vec{v})=[\vec{v}]_{B^{\prime}}$ (i.e. take B^{\prime} coordinates). Let T be the transformation matrix from B to B^{\prime} coordinates, so $[\vec{v}]_{B^{\prime}}=T[\vec{v}]_{B}$. Then $T \vec{x}=\left(\phi_{B^{\prime}} \circ \phi_{B}^{-1}\right)(\vec{x})$ for all $\vec{x} \in \mathbb{R}^{n}$.

18. Let $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis of $V, C=\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\}$ a basis of W, and $L: V \rightarrow W$ a linear transformation. Let A be the matrix representation of L with respect to B and C. Let $\phi_{B}: V \rightarrow \mathbb{R}^{n}$ be $\phi_{B}(\vec{v})=[\vec{v}]_{B}$ and let $\phi_{C}: W \rightarrow \mathbb{R}^{m}$ be $\phi_{C}(\vec{w})=[\vec{w}]_{C}$. Then $A \vec{x}=\left(\phi_{C} \circ L \circ \phi_{B}^{-1}\right)(\vec{x})$ for every $\vec{x} \in \mathbb{R}^{n}$.

19. Continuing the notation of the previous problem,
(a) $\phi_{B}(\operatorname{Ker} L)=$ null space A
(b) $\phi_{C}($ Range $L)=\operatorname{col}$ space A
(c) dim null space $A+\operatorname{dim} \operatorname{col}$ space $A=\operatorname{dim} \operatorname{Ker} L+\operatorname{dim}$ Range $L=\operatorname{dim} V=n$
20. If $L: V \rightarrow \mathbb{R}^{n}$ is an isomorphism, then there exists a basis B of V for which $L(\vec{v})=[\vec{v}]_{B}$.
21. A linear transformation $L: V \rightarrow W$ can be represented by a matrix by choosing isomorphisms $\phi: V \rightarrow \mathbb{R}^{n}, \psi: W \rightarrow \mathbb{R}^{m}$, and taking the matrix to be the matrix A which fills in the bottom arrow of the diagram

Why is this compatible with the usual definition of the matrix representation of a linear transformation?

