
Linear Algebra, Spring 2016
Worksheet, April 14

Core Concepts:

• Vector Spaces

– span, linear independence, basis, dimension, subspaces

• Linear Transformations

– kernel, range, isomorphism

• Solving Systems of Linear Equations

– homogeneous systems, inhomogeneous systems

The following statements explore the relationships between the core concepts and other
topics from the class. Try to prove each statement.

1. If dimV = n, then the following statements are equivalent

(a) ~v1, . . . , ~vn is a basis of V

(b) ~v1, . . . , ~vn are linearly independent

(c) ~v1, . . . , ~vn span V

2. Let L : V → W be a linear transformation. Then KerL is a subspace of V , RangeL
is a subspace of W .

3. If U is a subspace of V , then L(U) = {L(~u) | ~u ∈ U } is a subspace of W , and
dimL(U) ≤ dimU . If L is an isomorphism then dimL(U) = dimU .

4. If U is a subspace of W , then L−1(U) = {~v ∈ V | L(~v) ∈ U } is a subspace of V . If
U is contained in the range of L, then dimL−1(U) ≥ dimU .

5. If ~v1, . . . , ~vn is a basis of V , and ~w1, . . . , ~wm are any vectors in W , then there is
exactly one linear transformation L : V → W such that L(~vi) = ~wi.

6. Let ~v1, . . . , ~vn be vectors in V . Let L : Rn → V be the linear transformation with
L(~ei) = ~vi. Then

(a) ~v1, . . . , ~vn are linearly independent if and only if KerL = {~0 }.
(b) ~v1, . . . , ~vn span V if and only if RangeL = V .

7. Let B = {~v1, . . . , ~vn } be a basis of V , L : V → W be a linear transformation, and
~wi = L(~vi) for i = 1, . . . , n. Then

(a) KerL = {~0 } if and only if ~w1, . . . , ~wm are linearly independent.



(b) RangeL = W if and only if ~w1, . . . , ~wm span W .

8. L : V → W is an isomorphism if and only if RangeL = W and KerL = {~0 }.

9. Let ~v1, . . . , ~vn be a basis of V . Then a linear transformation L : V → W is an
isomorphism if and only if L(~v1), . . . , L( ~vn) is a basis of W .

10. Let L : V → W be an isomorphism. Recall that this means L is one-to-one and
onto, so the inverse function L−1 : W → V exists and is defined by

L−1(~w) = ~v where ~v is the unique vector with ~w = L(~v).

Show that L−1 is a linear transformation. Note: L−1 is automatically one-to-one
and onto because L is (this is a general fact about inverse functions), so L−1 is in
fact an isomorphism.

11. What is the domain and target of the function L ◦ L−1? What is the formula for
this function? Same questions for L−1 ◦ L.

12. Let U, V,W be vector spaces. If K : U → V is a linear transformation and L : V →
W is a linear transformation, then L ◦K is a linear transformation.

13. Let
Lin(V,W ) = {L : V → W | L is a linear transformation }.

Define vector addition and scalar multiplication operations on this set by

(L+K)(~v) = L(~v) +K(~v), (λL)(~v) = λ~v.

Then Lin(V,W ) is a vector space with these operations. Remark: An important
special case is when W = R, so the vector space is Lin(V,R). This vector space is
called the dual of V and is usually denoted V ∗.

14. The vector space Lin(Rn,Rm) can be identified with the vector space Mm,n of
all m × n matrices. More precisely: There is an obvious linear transformation
Lin(Rn,Rm)→ Mm,n, and it is an isomorphism. What is this obvious linear trans-
formation and why is it an isomorphism?

15. Let A be an m × n matrix and let L : Rn → Rm be the linear transformation
L(~x) = A~x.

(a) RangeL = col spaceA

(b) KerL = null spaceA

(c) dim RangeL = rankA

(d) dim KerL = nullityA

(e) ~x is a solution to A~x = ~0 (homogeneous equation) if and only if ~x ∈ KerL

(f) the set of solutions to A~x = 0 is KerL



(g) A~x = ~b (inhomogeneous equation) has a solution if and only if ~b ∈ RangeL

(h) Let ~x0 be a fixed vector with A~x0 = ~b. Then an arbitrary solution to A~x = ~b
can be written as ~x = ~x0 + ~xh with ~xh ∈ KerL. Geometrically, the set of
solutions to A~x = ~b is the subspace KerL shifted by ~x0 (hence an affine space).

(i) L is an isomorphism if and only if A is nonsingular.

(j) If L is an isomorphism, then L−1(~x) = A−1~x.

16. Let B = {~v1, . . . , ~vn } be a basis of V and let L : V → Rn be the function L(~v) =
[~v]B. Then L is an isomorphism.

17. Let B = {~v1, . . . , ~vn } and B′ = {~v′1, . . . , ~v′n } be two bases of V . Let φB : V → Rn

be φB(~v) = [~v]B (i.e. take B coordinates) and φB′ : V → Rn be φB′(~v) = [~v]B′ (i.e.
take B′ coordinates). Let T be the transformation matrix from B to B′ coordinates,
so [~v]B′ = T [~v]B. Then T~x = (φB′ ◦ φ−1B )(~x) for all ~x ∈ Rn.
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18. Let B = {~v1, . . . , ~vn } be a basis of V , C = { ~w1, . . . , ~wm } a basis of W , and
L : V → W a linear transformation. Let A be the matrix representation of L with
respect to B and C. Let φB : V → Rn be φB(~v) = [~v]B and let φC : W → Rm be
φC(~w) = [~w]C . Then A~x = (φC ◦ L ◦ φ−1B )(~x) for every ~x ∈ Rn.
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19. Continuing the notation of the previous problem,

(a) φB(KerL) = null spaceA

(b) φC(RangeL) = col spaceA

(c) dim null spaceA+ dim col spaceA = dim KerL+ dim RangeL = dimV = n

20. If L : V → Rn is an isomorphism, then there exists a basis B of V for which
L(~v) = [~v]B.

21. A linear transformation L : V → W can be represented by a matrix by choosing
isomorphisms φ : V → Rn, ψ : W → Rm, and taking the matrix to be the matrix A
which fills in the bottom arrow of the diagram
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Why is this compatible with the usual definition of the matrix representation of a
linear transformation?


