True/False

1.	Which of the following sets are subspaces of \mathbb{R}^3 ? Circle yes if it is a and no if it is not.	subspace (15 pts)
	(a) A line in \mathbb{R}^3 which does not go through the origin.	yes/no
	(b) A plane through the origin in \mathbb{R}^3 .	yes/no
	(c) The origin.	yes/no
	(d) A sphere of radius 1 in \mathbb{R}^3 centered at the origin.	yes/no
	(e) A ball of radius 1 in \mathbb{R}^3 centered at the origin (this is the sphere and its interior)	yes/no
	(f) $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 5\\-1\\2 \end{bmatrix} \right\}$	yes/no
	(g) The null space of a 4×3 matrix.	yes/no
	(h) The solutions to the linear system $A\mathbf{x} = \mathbf{b}$ where A is a fixed 3×3 matrix and b is a fixed nonzero vector.	yes/no
	(i) The column space of a 3×5 matrix.	yes/no
	(j) The set of all vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ such that $z = xy$.	yes/no
2.	Determine if the statement is true or false. If it is true, give a proof false, find a counterexample.	. If it is

- (a) If V is a nonzero vector space, then V contains infinitely many vectors.
- (b) If V has basis S and W is a subspace of V, then there exists a set T contained in S which is a basis for W.
- (c) If W is a subspace of V and T is a basis for W, then there exists a basis S for V which contains T.
- (d) If $S = {\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_k}}$ is a set of linearly independent vectors in a vector space V and **w** is a nonzero vector in V then the set ${\mathbf{v_1}+\mathbf{w}, \mathbf{v_2}+\mathbf{w}, ..., \mathbf{v_k}+\mathbf{w}}$ is also linearly independent.
- (e) If two matrices have the same RREF, then they have the same row space.
- (f) If two matrices have the same RREF, then they have the same column space.

(g) If U and W are subspaces of a vector space V and $\dim U < \dim W$, then U is a subspace of W.

(h) Any subspace of \mathbb{R}^3 which contains the vectors $\begin{bmatrix} 1\\2\\-1 \end{bmatrix}$ and $\begin{bmatrix} 2\\1\\-2 \end{bmatrix}$ must also contain the vector $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$.

- (i) If $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k}$ is a linearly independent set of vectors in \mathbb{R}^n is A is a fixed $m \times n$ matrix then the set $T = {A\mathbf{v}_1, A\mathbf{v}_2, ..., A\mathbf{v}_k}$ is a linearly independent set of vectors in \mathbb{R}^m .
- (j) If $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is a linearly independent set of vectors in \mathbb{R}^n is A is a fixed invertible $n \times n$ matrix then the set $T = \{A\mathbf{v}_1, A\mathbf{v}_2, ..., A\mathbf{v}_k\}$ is a linearly independent set of vectors in \mathbb{R}^n .
- (k) If V is spanned by an infinite set of vectors S, then V is infinite-dimensional.
- (l) If V contains an infinite set of vectors which are linearly independent then V is infinite-dimensional.
- (m) If W is a subspace of a finite dimensional vector space V and dim $W = \dim V$ then W = V.
- (n) Let A be an $m \times n$ matrix and **b** be a vector in \mathbb{R}^m . The set of solutions to the linear system $A\mathbf{x} = \mathbf{b}$ is a subspace of \mathbb{R}^n .
- (o) Let V be a vector space with operations \oplus , \odot and let \mathbf{u}, \mathbf{v} be vectors in V and r a real number. If $r \odot (\mathbf{u} \oplus \mathbf{v}) = \mathbf{0}$ then either r = 0 or \mathbf{v} is the negative of \mathbf{u} .
- (p) Let V be a set with operations \oplus , \odot . Suppose there exists $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V such that $\mathbf{u} \oplus \mathbf{v} = \mathbf{u}$ and $\mathbf{w} \oplus \mathbf{v} \neq \mathbf{w}$. Then V is not a vector space.
- (q) Let W be a subspace of V. If S is a set of linearly independent vectors in V and every vector in W can be written as a linear combination of the vectors in S then S is a basis for W.
- (r) In an *n*-dimensional vector space V, any set consisting of at least n non-zero vectors is a spanning set for V.
- (s) Let $S = {\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_k}}$ be a set of linearly independent vectors in a vector space V and $c \neq 0$ be a real number. Then the set $T = {c\mathbf{v_1}, c\mathbf{v_2}, ..., c\mathbf{v_k}}$ is linearly independent.
- (t) Let S be a set of k vectors in V and let W be the span of S. Then $\dim W < k$ if and only if S is not a linearly independent set.
- (u) Let $S = {\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_k}}$ be a set of vectors in a vector space V. Then any subspace of V which contains S also contains the span of S.

- (v) Let W be the set of all polynomials whose coefficients add up to 0. W is an infinite dimensional subspace of P and W has basis $\{1 - t, 1 - t^2, 1 - t^3, 1 - t^4,\}$.
- (w) If W is a subspace of a finite dimensional vector space V and dim $W = \dim V$ then W = V.
- (x) If W is a subspace of V and W and V are both infinite dimensional then W = V.