Name: \qquad
Differential Equations, Spring 2017

You must show all your work to receive credit. Calculators are allowed.

Problem 1: (3 points) Consider the second order ODE

$$
x^{\prime \prime}+\sin \left(x^{\prime}\right)+3 t e^{x}=t^{3} .
$$

1. Rewrite as a 2 dim 1st order system.

Solution:
let $x_{1}=x, x_{2}=x^{\prime}$
then $x_{2}^{\prime}=x^{\prime \prime}=t^{3}-\sin \left(x^{\prime}\right)-3 t e^{x}=t^{3}-\sin \left(x_{2}\right)-3 t e^{x_{1}}$ and the system is

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=t^{3}-\sin \left(x_{2}\right)-3 t e^{x_{1}}
\end{aligned}
$$

2. Let \vec{G} be the function such that your answer above is of the form $\vec{x}^{\prime}=\vec{G}(t, \vec{x})$. Code the function \vec{G} into Matlab. An outline is provided below.
```
function val=G(t,x)
```

val $=\left[x(2) ; \mathrm{t}^{\wedge} 3-\sin (x(2))-3 * t * e^{\wedge}(x(1))\right] ;$
end

