Name:
Differential Equations, Spring 2017
You must show all your work to receive credit. Calculators are allowed.

Problem 1: (3 points) A is a 3×3 matrix and $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ are vectors such that

$$
A \overrightarrow{v_{1}}=-\overrightarrow{v_{1}}, \quad A \overrightarrow{v_{2}}=2 \overrightarrow{v_{2}}, \quad A \overrightarrow{v_{3}}=-4 \overrightarrow{v_{3}} .
$$

Find the solution of the IVP

$$
\begin{aligned}
\vec{x}^{\prime} & =A \vec{x}, \\
\vec{x}(0) & =7 \overrightarrow{v_{1}}+8 \overrightarrow{v_{2}}+9 \overrightarrow{v_{3}} .
\end{aligned}
$$

Solution: the above information means that $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ are eigenvectors with eigenvalues $-1,2,-4$. Since the eigenvalues are distinct, the eigenvectors are automatically linearly independent, so the general solution is

$$
\vec{x}(t)=c_{1} e^{t} \overrightarrow{v_{1}}+c_{2} e^{2 t} \overrightarrow{v_{2}}+c_{3} e^{-4 t} \overrightarrow{v_{3}} .
$$

(Note that the system is 3 dimensional, so we know that the general solution is composed of 3 linearly independent solutions. If the system were higher dimensional we would not have enough information to write down the general solution.) Plugging in $t=0$ gives $\vec{x}(0)=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+c_{3} \overrightarrow{v_{3}}$. The IC then implies that $c_{1}=7, c_{2}=8, c_{3}=9$. Thus the solution to the IVP is

$$
\vec{x}(t)=7 e^{t} \overrightarrow{v_{1}}+8 e^{2 t} \overrightarrow{v_{2}}+9 e^{-4 t} \overrightarrow{v_{3}}
$$

