
Differential Equations, Spring 2017
Written Assignment #5, Due Friday, April 28

The goal of this assignment is to use matrix exponentials to solve some ODEs. If A is
a square n× n matrix, then the exponential of A is the n× n matrix defined by

eA = In + A+
A2

2!
+
A3

3!
+ · · · .

In other words: we just use the power series definition of the exponential function! (Warn-
ing: In general, eAeB 6= eA+B. If AB = BA, it is however true that eAeB = eA+B.) If t is
a scalar variable, then the exponential of tA is the function

etA = In + tA+
(tA)2

2!
+

(tA)3

+
· · ·

= In + tA+
t2A2

2!
+
t3A3

3!
+ · · ·

=
∞∑
k=0

tkAk

k!
.

The derivative of etA is AetA, because

d

dt
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d
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∞∑
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tkAk

k!
=
∞∑
k=0

d
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(
tkAk

k!

)
=
∞∑
k=1

k
tk−1Ak

k!
=
∞∑
k=1

tk−1Ak

(k − 1)!

= A
∞∑
k=1
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(k − 1)!
= A

∞∑
k=0

tkAk

k!
= AetA.

We can use this property to easily solve a homogeneous linear ODE: The solution to the
IVP

~x′ = A~x,

~x(0) = ~x0

is
~x(t) = etA ~x0

because

d

dt
~x(t) =

(
d

dt
etA
)
~x0 = AetA ~x0 = A~x(t), ~x(0) = e0A ~x0 = In ~x0 = ~x0.

We will call this method of solution the matrix exponential method. Now onto the prob-
lems.

1. We begin with the IVP

x′1 = −x2,
x′2 = x1,

x1(0) = c1,

x2(0) = c2.



In matrix notation, this is the equation ~x′ = A~x, ~x(0) = ~x0 with

A =

[
0 −1
1 0

]
, ~x =

[
x1
x2

]
, ~x0 =

[
c1
c2

]
.

(a) Show that

etA =

[
cos t − sin t
sin t cos t

]
.

Hint: First compute the powers (tA)k. Try to recognize a pattern. Then write
down etA, and use the power series of cos t and sin t to simplify it.

(b) Use part (a) and the matrix exponential method (explained in the introduction)
to write down the general solution of the IVP. (Note: Since the IC involves the
arbitrary constants c1, c2, this will be the general solution.)

(c) Use the methods of Chapter 4 (elimination/substitution) to solve the IVP.
Check that your answer agrees with part (b).

Remark: Part (a) is basically a matrix analog of Euler’s identity eiθ = cos θ+ i sin θ
because

etA =

[
cos t − sin t
sin t cos t

]
= I2 cos t+ A sin t.

The matrix A plays the role of multiplication by i. In fact, if we identify C with the
plane R2 in the standard way, then the transformation ~v 7→ A~v is identified with
multiplication by i.

2. Next consider the system

x′1 = x1 + x2,

x′2 = x2,

x1(0) = c1,

x2(0) = c2.

In matrix notation, this is the equation ~x′ = A~x, ~x(0) = ~x0 with

A =

[
1 1
0 1

]
, ~x =

[
x1
x2

]
, ~x0 =

[
c1
c2

]
.

(a) Show that

etA =

[
et tet

0 et

]
.

(b) Use part (a) and the matrix exponential method to write down the general
solution of the IVP. (Note: Since the IC involves the arbitrary constants c1, c2,
this will be the general solution.)

(c) Use the methods of Chapter 4 (elimination/substitution) to solve the IVP.
Check that your answer agrees with part (b).



Remark: This problem explains why an extra t factor appears in one of the solutions
for a (1 dim) second order ODE with a double characteristic root, and also why
correction factors for particular solutions are of the form td.

3. Finally, let’s relate the matrix exponential method to the eigenvalue method.

(a) Suppose λ is an eigenvalue of A with eigenvector ~v. Show that etλ is an eigen-
value of etA with eigenvector ~v. Hint: Compute etA~v.

(b) Continuing part (a), let ~x(t) = etA~v. By the matrix exponential method, we
know this is a solution of the IVP ~x′ = A~x, ~x(0) = ~v. How does this solution
relate to the solution produced by the eigenvalue method? Hint: There is
almost no work that needs to be done for this problem (beyond part (a)).

(c) Now consider the following general type of situation: Suppose the n × n
matrix A has n linearly independent eignvectors ~v1, . . . , ~vn with correspond-
ing eigenvalues λ1, . . . , λn. An arbitrary vector ~v ∈ Rn can be written as
~v = c1 ~v1 + · · · + cn ~vn for some scalars c1, . . . , cn. Show that the solution
~x(t) = etA~v to the IVP ~x′ = A~x, ~x(0) = ~v produced by the matrix exponential
method agrees with the solution produced by the eigenvalue method.


