Differential Equations, Spring 2017
Written Assignment \#5, Due Friday, April 28
The goal of this assignment is to use matrix exponentials to solve some ODEs. If A is a square $n \times n$ matrix, then the exponential of A is the $n \times n$ matrix defined by

$$
e^{A}=I_{n}+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots
$$

In other words: we just use the power series definition of the exponential function! (Warning: In general, $e^{A} e^{B} \neq e^{A+B}$. If $A B=B A$, it is however true that $e^{A} e^{B}=e^{A+B}$.) If t is a scalar variable, then the exponential of $t A$ is the function

$$
\begin{aligned}
e^{t A} & =I_{n}+t A+\frac{(t A)^{2}}{2!}+\frac{(t A)^{3}}{+} \cdots \\
& =I_{n}+t A+\frac{t^{2} A^{2}}{2!}+\frac{t^{3} A^{3}}{3!}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{t^{k} A^{k}}{k!}
\end{aligned}
$$

The derivative of $e^{t A}$ is $A e^{t A}$, because

$$
\begin{aligned}
\frac{d}{d t} e^{t A} & =\frac{d}{d t} \sum_{k=0}^{\infty} \frac{t^{k} A^{k}}{k!}=\sum_{k=0}^{\infty} \frac{d}{d t}\left(\frac{t^{k} A^{k}}{k!}\right)=\sum_{k=1}^{\infty} k \frac{t^{k-1} A^{k}}{k!}=\sum_{k=1}^{\infty} \frac{t^{k-1} A^{k}}{(k-1)!} \\
& =A \sum_{k=1}^{\infty} \frac{t^{k-1} A^{k-1}}{(k-1)!}=A \sum_{k=0}^{\infty} \frac{t^{k} A^{k}}{k!}=A e^{t A} .
\end{aligned}
$$

We can use this property to easily solve a homogeneous linear ODE: The solution to the IVP

$$
\begin{aligned}
\vec{x}^{\prime} & =A \vec{x}, \\
\vec{x}(0) & =\overrightarrow{x_{0}}
\end{aligned}
$$

is

$$
\vec{x}(t)=e^{t A} \overrightarrow{x_{0}}
$$

because

$$
\frac{d}{d t} \vec{x}(t)=\left(\frac{d}{d t} e^{t A}\right) \overrightarrow{x_{0}}=A e^{t A} \overrightarrow{x_{0}}=A \vec{x}(t), \quad \vec{x}(0)=e^{0 A} \overrightarrow{x_{0}}=I_{n} \overrightarrow{x_{0}}=\overrightarrow{x_{0}} .
$$

We will call this method of solution the matrix exponential method. Now onto the problems.

1. We begin with the IVP

$$
\begin{aligned}
x_{1}^{\prime} & =-x_{2}, \\
x_{2}^{\prime} & =x_{1}, \\
x_{1}(0) & =c_{1}, \\
x_{2}(0) & =c_{2} .
\end{aligned}
$$

In matrix notation, this is the equation $\vec{x}^{\prime}=A \vec{x}, \vec{x}(0)=\vec{x}_{0}$ with

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \vec{x}_{0}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] .
$$

(a) Show that

$$
e^{t A}=\left[\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right]
$$

Hint: First compute the powers $(t A)^{k}$. Try to recognize a pattern. Then write down $e^{t A}$, and use the power series of $\cos t$ and $\sin t$ to simplify it.
(b) Use part (a) and the matrix exponential method (explained in the introduction) to write down the general solution of the IVP. (Note: Since the IC involves the arbitrary constants c_{1}, c_{2}, this will be the general solution.)
(c) Use the methods of Chapter 4 (elimination/substitution) to solve the IVP. Check that your answer agrees with part (b).

Remark: Part (a) is basically a matrix analog of Euler's identity $e^{i \theta}=\cos \theta+i \sin \theta$ because

$$
e^{t A}=\left[\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right]=I_{2} \cos t+A \sin t
$$

The matrix A plays the role of multiplication by i. In fact, if we identify \mathbb{C} with the plane \mathbb{R}^{2} in the standard way, then the transformation $\vec{v} \mapsto A \vec{v}$ is identified with multiplication by i.
2. Next consider the system

$$
\begin{aligned}
x_{1}^{\prime} & =x_{1}+x_{2}, \\
x_{2}^{\prime} & =x_{2}, \\
x_{1}(0) & =c_{1}, \\
x_{2}(0) & =c_{2} .
\end{aligned}
$$

In matrix notation, this is the equation $\vec{x}^{\prime}=A \vec{x}, \vec{x}(0)=\vec{x}_{0}$ with

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \vec{x}_{0}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] .
$$

(a) Show that

$$
e^{t A}=\left[\begin{array}{cc}
e^{t} & t e^{t} \\
0 & e^{t}
\end{array}\right]
$$

(b) Use part (a) and the matrix exponential method to write down the general solution of the IVP. (Note: Since the IC involves the arbitrary constants c_{1}, c_{2}, this will be the general solution.)
(c) Use the methods of Chapter 4 (elimination/substitution) to solve the IVP. Check that your answer agrees with part (b).

Remark: This problem explains why an extra t factor appears in one of the solutions for a (1 dim) second order ODE with a double characteristic root, and also why correction factors for particular solutions are of the form t^{d}.
3. Finally, let's relate the matrix exponential method to the eigenvalue method.
(a) Suppose λ is an eigenvalue of A with eigenvector \vec{v}. Show that $e^{t \lambda}$ is an eigenvalue of $e^{t A}$ with eigenvector \vec{v}. Hint: Compute $e^{t A} \vec{v}$.
(b) Continuing part (a), let $\vec{x}(t)=e^{t A} \vec{v}$. By the matrix exponential method, we know this is a solution of the IVP $\vec{x}^{\prime}=A \vec{x}, \vec{x}(0)=\vec{v}$. How does this solution relate to the solution produced by the eigenvalue method? Hint: There is almost no work that needs to be done for this problem (beyond part (a)).
(c) Now consider the following general type of situation: Suppose the $n \times n$ matrix A has n linearly independent eignvectors $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. An arbitrary vector $\vec{v} \in \mathbb{R}^{n}$ can be written as $\vec{v}=c_{1} \overrightarrow{v_{1}}+\cdots+c_{n} \overrightarrow{v_{n}}$ for some scalars c_{1}, \ldots, c_{n}. Show that the solution $\vec{x}(t)=e^{t A} \vec{v}$ to the IVP $\vec{x}^{\prime}=A \vec{x}, \vec{x}(0)=\vec{v}$ produced by the matrix exponential method agrees with the solution produced by the eigenvalue method.

