
Differential Equations, Spring 2017
Computer Project 3, Due 11:30 am, Friday, April 14

The goal of this project is to use the Improved Euler Method to numerically solve the
Kepler problem (inverse square central force field problem). Submit the following file on
Canvas:

kepler.m

Make sure the file has exactly this name.
To simplify things we will consider a particle of mass m = 1 kg and assume that the

motion lies within a plane, so the position of the particle at time t is

[
x(t)
y(t)

]
. For the

Kepler problem, the force acting on the particle depends only on the position, and takes
the form

~F

([
x
y

])
= − 1

r3

[
x
y

]
,

where r =
√

x2 + y2. Then the ODE for the Kepler problem is[
x′′(t)
y′′(t)

]
= ~F

([
x
y

])
.

The first step is to rewrite this as a 4 dim 1st order system. You can do this by
introducing variables x1, x2, x3, x4 and letting

x1 = x, x2 = y, x3 = x′, x4 = y′.

Then, with

~x =


x1

x2

x3

x4

 ,

the ODE takes the form
~x′ = ~G(t, ~x)

for some function ~G. Code this function ~G into a Matlab function of the name kepler.
Here is an outline of the function

function val=kepler(t,x)

...

end

The variable t will not actually be used in the function but we keep it as an argument
because the ImprovedEulerMethod program expects a function with a t input and an x

input. The Matlab variable x stands for the vector variable ~x and not the scalar variable
x. Also, remember that our convention is to always use column (vertical) vectors for our
vectors (instead of row vectors).



Now you can use the Improved Euler Method to solve the ODE. The program that we
wrote before should still work; we just have to pass it in the vector function kepler which
we created and enter the initial condition as a column vector with 4 entries. Download
ImprovedEulerMethod.m from the solutions to Computer Project 2 on the class website.
Here are some commands you can run to test if everything works.

hold on

[t x]=ImprovedEulerMethod(@kepler,0,10,100000,[.5 .2 0 2]’);

plot(x(1,:),x(2,:),’b’)

[t x]=ImprovedEulerMethod(@kepler,0,10,100000,[.5 .2 0 -2]’);

plot(x(1,:),x(2,:),’b’)

[t x]=ImprovedEulerMethod(@kepler,0,40,100000,[1 1 0 -1]’);

plot(x(1,:),x(2,:),’g’)

This should plot two solutions in the x1x2-plane. (The first 4 commands together plot
one solution; you can think of the first ImprovedEulerMethod as going forward in time
and the second as going backward in time because the initial velocities are opposite.)

That’s it for what you need to hand in. If you think the solution is too boring, you
can try the following variation: Take the force to depend on time as well, say

~F

([
x
y

])
= − .1 · sin(t) + .9

r3

[
x
y

]
.

Rewrite this as a first order system and code the right hand side of the system into the
function

function val=keplerVariation(t,x)

...

end

Then run the test commands

[t x]=ImprovedEulerMethod(@keplerVariation,0,100,100000,[.5 .5 .1 -.1]’);

plot(x(1,:),x(2,:))

You can experiment with other IC and time intervals.


