Name: \qquad Section:

You must show all your work to receive credit. Calculators are allowed.

Problem 1: (3 points) Find the general solution to

$$
y^{\prime \prime}-5 y^{\prime}+6 y=e^{2 t}
$$

Solution: The characteristic equation is $r^{2}-5 r+6=0$ and the roots are $r=2,3$. Thus the complementary solution is

$$
y_{c}=C_{1} e^{2 t}+C_{2} e^{3 t}
$$

Look for y_{p} of the form

$$
y_{p}=A t e^{2 t}
$$

Note that the t appearing here is a correction factor; it is $t=t^{1}$ because 2 is a root of multiplicity 1 of the characteristic equation. Then

$$
\begin{gathered}
y_{p}=A t e^{2 t} \\
y_{p}^{\prime}=(2 A t+A) e^{2 t} \\
y_{p}^{\prime \prime}=(4 A t+4 A) e^{2 t} \\
y_{p}^{\prime \prime}-5 y_{p}^{\prime}+6 y_{p}=-A e^{2 t}
\end{gathered}
$$

Thus $A=-1$ and $y_{p}=-t e^{2 t}$. The general solution is

$$
y=C_{1} e^{2 t}+C_{2} e^{3 t}-t e^{2 t}
$$

