
Differential Equations, Fall 2016
Computer Project 4, Due Wednesday, December 7

The goal of this assignment is to numerically solve some force equals mass times
acceleration problems. You should hand in the following things:

1. For problem 1, a printout of the file f.m and a printout of the commands and output.

2. For problem 2, a printout of the plot of displacement versus time.

3. For problem 3, a printout of the file f.m and a printout of the commands and output.

4. For problem 4, a printout of the plot of the positions of the Earth and the Moon
(on the same graph).

5. For problem 5, a printout of the commands and output.

1. (3 points) The goal of this problem is to write a function f.m in Matlab to implement

the function ~G appearing in a certain differential equation of the form ~x′ = ~G(t, ~x).
The differential equation we will consider arises from a damped spring with an
external force F (t). We will take

m = 1, c = 1, k = 5, F (t) = cos(5t),

which gives the second order equation

x′′ + x′ + 5x = cos(5t).

Now we want to rewrite this as a system. Introduce dependent variables x1 = x1(t)
and x2 = x2(t), and let

~x =

[
x1

x2

]
.

Let x1 = x and x2 = x′. Then the second order equation can be rewritten as the
two dimensional first order system[

x1

x2

]′
=

[
x2

−5x1 − x2 + cos(5t)

]
.

The right hand side of this is the function ~G. In other words,

~G

(
t,

[
x1

x2

])
=

[
x2

−5x1 − x2 + cos(5t)

]
.

Now code this function ~G into the Matlab function f.m. The outline of the function
should be

function val=f(t,x)

end



Then run the following commands:

>format long

>f(1,[2 3]’)

>f(-2,[3 7]’)

Turn in a printout of the file f.m and a printout of the commands and output.

2. (3 points) The goal of this problem is to use the Runge-Kutta Method to solve the
system from the previous problem. Download RungeKuttaMethod.m from the class
website, it can be found in the solutions for Computer Project 3. We will consider
an initial value problem with x(0) = 1, x′(0) = 0, and will consider the time interval
0 ≤ t ≤ 30. Then the following command will solve it, using 10,000 steps:

>[t x]=RungeKuttaMethod(0,30,10000,[1 0]’);

The list of time values is stored in t and the list of ~x values is stored in x. Now
generate a plot of the displacement of the spring versus time. Print it out and hand
it in.

Food for thought (don’t hand in): What happens if there is no damping (so c = 0)
and the external force F (t) is F (t) = cos(

√
5t)? Can you explain this from what we

learned in class? Physically, what is happening? To see what is happening it may
be useful to look at a longer time interval.

3. (3 points) The goal of this problem is to write a function f.m to implement the

function ~G in a different differential equation. The differential equation will be the
system representing the Earth and the Moon under the law of universal gravitation.
The first mass m1 will be the Earth and the second mass m2 will be the Moon. Take
them to be

m1 = 5.972× 1024 kg , m2 = 7.342× 1022 kg .

Recall that the Newton’s law of universal gravitation says that masses of m1 kg and
m2 kg a distance r m apart each experience a gravitational force of magnitude

Gm1m2/r
2,

where G is the gravitational constant which we will take to be

G = 6.674× 10−11 N·(m/kg)2.

The direction of the force is from one mass to the other. In other words, suppose
~p1 is the position of the Earth and ~p2 is the position of the Moon. Then the force
~F1 acting on the Earth is in the direction of ~p2 − ~p1, and the force ~F2 acting on the
Moon is in the direction of ~p1 − ~p2. Since |~p1 − ~p2| = |~p1 − ~p2| = r, the forces are

~F1 = Gm1m2
~p2 − ~p1
|~p2 − ~p1|3

, ~F2 = Gm1m2
~p1 − ~p2
|~p2 − ~p1|3

.



With two masses, coordinates can be chosen such that the motion always takes place
in a plane, so we will assume that ~p1 and ~p2 are vectors in R2, and so are ~F1 and
~F2. Now introduce dependent variables x1, x2, x3, x4 and let

~p1 =

[
x1

x2

]
, ~p2 =

[
x3

x4

]
.

These functions represent the positions of the Earth and the Moon. Force equals
mass times acceleration then gives the equations

~F1 = m1 ~p1
′′, ~F2 = m2 ~p2

′′.

They can be broken down into components, say as

~F1 =

[
F11

F12

]
, ~F2 =

[
F21

F22

]
.

F11, F12, F21, F22 are functions which take in the 4 inputs x1, x2, x3, x4 and have 1
output. We can write this as a 4 dimensional second order system

x1

x2

x3

x4


′′

=


F11/m1

F12/m1

F21/m2

F22/m2

 .

By introducing dependent variables x5, x6, x7, x8 and letting

x5 = x′1, x6 = x′2, x7 = x′3, x8 = x′4

we can write this as an 8 dimensional first order system

x1

x2

x3

x4

x5

x6

x7

x8



′

=



x5

x6

x7

x8

F11/m1

F12/m1

F21/m2

F22/m2


.

This is the differential equation we will consider in this problem. The left hand side
is ~x′ and the right hand side is ~G(t, ~x). Now code the function ~G into the Matlab
function f.m. (You might want to save your f.m from the first part of this project
into a seperate file first, maybe call it fspring.m.) The format of the function
should be

function val=f(t,x)

end



Then run the following commands:

>format long

>f(1,[1 2 3 4 5 6 7 8]’)

Turn in a printout of the file and a printout of the commands and output.

4. (3 points) Now we will solve the ODE from the previous problem. The distance
from the Moon to the Earth is about 3.8 × 108 m. The velocity of the Moon is
about 1022 m/sec. We want to choose coordinates such that the center of mass is
at the origin and does not move. So we will take as initial condition

~x0 =



0
0

380000000
0
0
0
0

1022


−



380000000m2

m1+m2

0
380000000m2

m1+m2

0
0

1022m2

m1+m2

0
1022m2

m1+m2


.

Now use the Runge-Kutta Method program to solve the system over the time interval
0 ≤ t ≤ 3600 ∗ 24 ∗ 28 with 1000 steps. Turn in a plot of the orbit of the Earth
and the Moon (on the same graph). The plot should be a two dimensional plot that
shows the positions of the Earth and the Moon. It will not show time dependence.

Here is some code you can run to animate the solution. It assumes that the output
of RungeKuttaMethod is stored into the variables t and x. You do not need to hand
this in.

[r c]=size(x);

plot(x(1,:),x(2,:));

hold on

plot(x(3,:),x(4,:));

earth=plot(x(1,1),x(2,1),’o’,’MarkerFaceColor’,’green’);

moon=plot(x(3,1),x(4,1),’o’,’MarkerFaceColor’,’blue’);

for k=2:c

earth.XData=x(1,k);

earth.YData=x(2,k);

moon.XData=x(3,k);

moon.YData=x(4,k);

drawnow

end

5. (3 points) Matlab has several built-in functions to solve systems of ODEs. One is
called ode23. The syntax is slightly different than the programs we created. First of



all, it works with row vectors instead of column vectors. Create a function frow.m

which is the same as f.m except that the second input and the output are row
vectors instead of column vectors. Then the following command will run ode23:

> [t x]=ode23(@frow,[0 3600*24*28],x0);

The first input tells it the name of the function to use for the differential equation.
The second input tells it the time range. The program automatically uses an ap-
propriate number of steps. The last input is the initial condition, x0 should be the
vector ~x0 from the previous problem except entered as a row vector. The output is
similar to RungeKuttaMethod except the role of rows and columns is swapped. You
can plot the output similarly to before, but remember that rows and columns are
swapped now, so the inputs to the plot command will be slightly different. Run the
following command and hand in the output:

> t(100),x(100,:)

6. (For fun only, do not turn in.) Now we put a man-made satellite into the mix. We
can describe its position with some extra dependent variables, say x9, x10 and its
velocity with x11 = x′9 and x12 = x′10. Assume the mass is m3 = 1000 kg. Since
the mass is small compared to the Earth and the Moon, we take the acceleration it
induces on the Earth and the Moon to be 0. The accleration x′11, x

′
12 of the satellite

is the sum of the accelerations due to the gravitational force of the Earth and the
moon. Update f.m to include the satellite. Then run the command

[t x]=RungeKuttaMethod(0,3600*24*40,1000,x0);

to solve the resulting system. The vector x0 will need to have 4 more entries put
into it to describe the initial conditions of the satellite. For example, you can use
the numbers 100000000 0 0 2000. You can then plot the trajectory of the satellite
using the command plot(x(9,:),x(10,:)). You can animate it by modifying the
animation code from the previous problem.


